
TEACHING GUIDE FOR SENIOR HIGH SCHOOL 

Basic Calculus 
CORE SUBJECT 

This Teaching Guide was collaboratively developed and reviewed by educators from public 
and private schools, colleges, and universities. We encourage teachers and other education 

stakeholders to email their feedback, comments, and recommendations to the Commission on 
Higher Education, K to 12 Transition Program Management Unit - Senior High School 

Support Team at k12@ched.gov.ph. We value your feedback and recommendations.

Commission on Higher Education 
in collaboration with the Philippine Normal University

INITIAL RELEASE: 13 JUNE 2016



This Teaching Guide by the 
Commission on Higher Education 
is licensed under a Creative 
Commons Attribution-
NonCommercial-ShareAlike 
4.0 International License. This 
means you are free to:  

Share — copy and redistribute 
the material in any medium or 
format 

Adapt — remix, transform, and 
build upon the material. 

The licensor, CHED, cannot 
revoke these freedoms as long as 
you follow the license terms. 
However, under the following 
terms: 

Attribution — You must give 
appropriate credit, provide a link 
to the license, and indicate if 
changes were made. You may do 
so in any reasonable manner, but 
not in any way that suggests the 
licensor endorses you or your use. 

NonCommercial — You may 
not use the material for 
commercial purposes. 

ShareAlike — If you remix, 
transform, or build upon the 
material, you must distribute 
your contributions under the 
same license as the original. 

Printed in the Philippines by EC-TEC 
Commercial, No. 32 St. Louis 
Compound 7, Baesa, Quezon City, 
ectec_com@yahoo.com

Published by the Commission on Higher Education, 2016  
Chairperson: Patricia B. Licuanan, Ph.D. 

Commission on Higher Education  
K to 12 Transition Program Management Unit  
Office Address: 4th Floor, Commission on Higher Education,  
C.P. Garcia Ave., Diliman, Quezon City  
Telefax: (02) 441-1143 / E-mail Address: k12@ched.gov.ph 

DEVELOPMENT TEAM 

Team Leader: Jose Maria P. Balmaceda, Ph.D. 

Writers: 
Carlene Perpetua P. Arceo, Ph.D.  
Richard S. Lemence, Ph.D.  
Oreste M. Ortega, Jr., M.Sc.  
Louie John D. Vallejo, Ph.D. 

Technical Editors:  
Jose Ernie C. Lope, Ph.D.  
Marian P. Roque, Ph.D. 

Copy Reader: Roderick B. Lirios 

Cover Artists: Paolo Kurtis N. Tan, Renan U. Ortiz 

CONSULTANTS 

THIS PROJECT WAS DEVELOPED WITH THE PHILIPPINE NORMAL UNIVERSITY. 
University President: Ester B. Ogena, Ph.D.  
VP for Academics: Ma. Antoinette C. Montealegre, Ph.D.  
VP for University Relations & Advancement: Rosemarievic V. Diaz, Ph.D. 

Ma. Cynthia Rose B. Bautista, Ph.D., CHED 
Bienvenido F. Nebres, S.J., Ph.D., Ateneo de Manila University  
Carmela C. Oracion, Ph.D., Ateneo de Manila University  
Minella C. Alarcon, Ph.D., CHED 
Gareth Price, Sheffield Hallam University  
Stuart Bevins, Ph.D., Sheffield Hallam University 

SENIOR HIGH SCHOOL SUPPORT TEAM  
CHED K TO 12 TRANSITION PROGRAM MANAGEMENT UNIT 

Program Director: Karol Mark R. Yee 

Lead for Senior High School Support: Gerson M. Abesamis 

Lead for Policy Advocacy and Communications: Averill M. Pizarro 

Course Development Officers:  
Danie Son D. Gonzalvo, John Carlo P. Fernando 

Teacher Training Officers:  
Ma. Theresa C. Carlos, Mylene E. Dones 

Monitoring and Evaluation Officer: Robert Adrian N. Daulat 

Administrative Officers: Ma. Leana Paula B. Bato,  
Kevin Ross D. Nera, Allison A. Danao, Ayhen Loisse B. Dalena



i

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DepEd Basic Calculus Curriculum Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Limits and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Lesson 1: The Limit of a Function: Theorems and Examples . . . . . . . . . . . . . . . . . . . . . . . 2

Topic 1.1: The Limit of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Topic 1.2: The Limit of a Function at c versus the Value of a Function at c . . . . . 17

Topic 1.3: Illustration of Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Topic 1.4: Limits of Polynomial, Rational, and Radical Functions . . . . . . . . . . . . . 28

Lesson 2: Limits of Some Transcendental Functions and Some Indeterminate Forms . . 38

Topic 2.1: Limits of Exponential, Logarithmic, and Trigonometric Functions . . . . 39

Topic 2.2: Some Special Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Lesson 3: Continuity of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Topic 3.1: Continuity at a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Topic 3.2: Continuity on an Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Lesson 4: More on Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Topic 4.1: Different Types of Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Topic 4.2: The Intermediate Value and the Extreme Value Theorems . . . . . . . . . 75

Topic 4.3: Problems Involving Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Lesson 5: The Derivative as the Slope of the Tangent Line . . . . . . . . . . . . . . . . . . . . . . . . 90

Topic 5.1: The Tangent Line to the Graph of a Function at a Point . . . . . . . . . . . . 91

Topic 5.2: The Equation of the Tangent Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Topic 5.3: The Definition of the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Lesson 6: Rules of Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Topic 6.1: Differentiability Implies Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



ii

Topic 6.2: The Differentiation Rules and Examples Involving Algebraic, 
Exponential, and Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

Lesson 7: Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Topic 7.1: Optimization using Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Lesson 8: Higher-Order Derivatives and the Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Topic 8.1: Higher-Order Derivatives of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Topic 8.2: The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Lesson 9: Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Topic 9.1: What is Implicit Differentiation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Lesson 10: Related Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Topic 10.1: Solutions to Problems Involving Related Rates . . . . . . . . . . . . . . . . . . 181

3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Lesson 11: Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Topic 11.1: Illustration of an Antiderivative of a Function . . . . . . . . . . . . . . . . . . . 193

Topic 11.2: Antiderivatives of Algebraic Functions . . . . . . . . . . . . . . . . . . . . . . . . . 196

Topic 11.3: Antiderivatives of Functions Yielding Exponential Functions and 
Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Topic 11.4: Antiderivatives of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . 202

Lesson 12: Techniques of Antidifferentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Topic 12.1: Antidifferentiation by Substitution and by Table of Integrals . . . . . . . 205

Lesson 13: Application of Antidifferentiation to Differential Equations . . . . . . . . . . . . . . 217

Topic 13.1: Separable Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Lesson 14: Application of Differential Equations in Life Sciences . . . . . . . . . . . . . . . . . . . 224

Topic 14.1: Situational Problems Involving Growth and Decay Problems . . . . . . . 225

Lesson 15: Riemann Sums and the Definite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Topic 15.1: Approximation of Area using Riemann Sums . . . . . . . . . . . . . . . . . . . 238

Topic 15.2: The Formal Definition of the Definite Integral . . . . . . . . . . . . . . . . . . . 253

Lesson 16: The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Topic 16.1: Illustration of the Fundamental Theorem of Calculus . . . . . . . . . . . . . 269

Topic 16.2: Computation of Definite Integrals using the Fundamental Theorem 
of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273



iii

Lesson 17: Integration Technique: The Substitution Rule for Definite Integrals . . . . . . . 280

Topic 17.1: Illustration of the Substitution Rule for Definite Integrals . . . . . . . . . 281

Lesson 18: Application of Definite Integrals in the Computation of Plane Areas . . . . . . . 292

Topic 18.1: Areas of Plane Regions Using Definite Integrals . . . . . . . . . . . . . . . . . 293

Topic 18.2: Application of Definite Integrals: Word Problems . . . . . . . . . . . . . . . . 304

Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309



iv

Introduction
As the Commission supports DepEd’s implementation of Senior High School (SHS), it upholds the vision 
and mission of the K to 12 program, stated in Section 2 of Republic Act 10533, or the Enhanced Basic 
Education Act of 2013, that “every graduate of basic education be an empowered individual, through a 
program rooted on...the competence to engage in work and be productive, the ability to coexist in fruitful 
harmony with local and global communities, the capability to engage in creative and critical thinking, 
and the capacity and willingness to transform others and oneself.” 

To accomplish this, the Commission partnered with the Philippine Normal University (PNU), the 
National Center for Teacher Education, to develop Teaching Guides for Courses of SHS. Together with 
PNU, this Teaching Guide was studied and reviewed by education and pedagogy experts, and was 
enhanced with appropriate methodologies and strategies. 

Furthermore, the Commission believes that teachers are the most important partners in attaining this 
goal. Incorporated in this Teaching Guide is a framework that will guide them in creating lessons and 
assessment tools, support them in facilitating activities and questions, and assist them towards deeper 
content areas and competencies. Thus, the introduction of the SHS for SHS Framework.

The SHS for SHS Framework 
The SHS for SHS Framework, which stands for “Saysay-Husay-Sarili for Senior High School,” is at the 
core of this book. The lessons, which combine high-quality content with flexible elements to 
accommodate diversity of teachers and environments, promote these three fundamental concepts:

SAYSAY: MEANING 
Why is this important? 

Through this Teaching Guide, 
teachers will be able to 
facilitate an understanding of 
the value of the lessons, for 
each learner to fully engage in 
the content on both the 
cognitive and affective levels. 

HUSAY: MASTERY 
How will I deeply understand this? 

Given that developing mastery 
goes beyond memorization, 
teachers should also aim for deep 
understanding of the subject 
matter where they lead learners 
to analyze and synthesize 
knowledge. 

SARILI: OWNERSHIP 
What can I do with this? 

When teachers empower 
learners to take ownership of 
their learning, they develop 
independence and self-
direction, learning about both 
the subject matter and 
themselves.
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The Parts of the Teaching Guide 
This Teaching Guide is mapped and aligned to the 
DepEd SHS Curriculum, designed to be highly 
usable for teachers. It contains classroom activities 
and pedagogical notes, and integrated with 
innovative pedagogies. All of these elements are 
presented in the following parts: 

1. INTRODUCTION   
• Highlight key concepts and identify the 

essential questions  

• Show the big picture  

• Connect and/or review prerequisite 
knowledge 

• Clearly communicate learning 
competencies and objectives  

• Motivate through applications and 
connections to real-life 

2. INSTRUCTION/DELIVERY 
• Give a demonstration/lecture/simulation/

hands-on activity 

• Show step-by-step solutions to sample 
problems 

• Use multimedia and other creative tools 

• Give applications of the theory 

• Connect to a real-life problem if applicable 

3. PRACTICE 
• Discuss worked-out examples 

• Provide easy-medium-hard questions 

• Give time for hands-on unguided classroom 
work and discovery  

• Use formative assessment to give feedback  

4. ENRICHMENT 
• Provide additional examples and 

applications 

• Introduce extensions or generalisations of 
concepts 

• Engage in reflection questions 

• Encourage analysis through higher order 
thinking prompts    

5. EVALUATION  
• Supply a diverse question bank for written 

work and exercises 

• Provide alternative formats for student 
work: written homework, journal, portfolio, 
group/individual projects, student-directed 
research project 

Pedagogical Notes 
The teacher should strive to keep a good balance 
between conceptual understanding and facility in 
skills and techniques. Teachers are advised to be 
conscious of the content and performance 
standards and of the suggested time frame for 
each lesson, but flexibility in the management of 
the lessons is possible. Interruptions in the class 
schedule, or students’ poor reception or difficulty 
with a particular lesson, may require a teacher to 
extend a particular presentation or discussion.  

Computations in some topics may be facilitated by 
the use of calculators. This is encour- aged; 
however, it is important that the student 
understands the concepts and processes involved 
in the calculation. Exams for the Basic Calculus 
course may be designed so that calculators are not 
necessary.  

Because senior high school is a transition period 
for students, the latter must also be prepared for 
college-level academic rigor. Some topics in 
calculus require much more rigor and precision 
than topics encountered in previous mathematics 
courses, and treatment of the material may be 
different from teaching more elementary courses. 
The teacher is urged to be patient and careful in 
presenting and developing the topics. To avoid too 
much technical discussion, some ideas can be 
introduced intuitively and informally, without 
sacrificing rigor and correctness.  

The teacher is encouraged to study the guide very 
well, work through the examples, and solve 
exercises, well in advance of the lesson. The 
development of calculus is one of humankind’s 
greatest achievements. With patience, motivation 
and discipline, teaching and learning calculus 
effectively can be realized by anyone. The teaching 
guide aims to be a valuable resource in this 
objective.
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On DepEd Functional Skills and CHED’s College Readiness Standards 
As Higher Education Institutions (HEIs) welcome the graduates of the Senior High School program, it is 
of paramount importance to align Functional Skills set by DepEd with the College Readiness Standards 
stated by CHED.  

The DepEd articulated a set of 21st century skills that should be embedded in the SHS curriculum across 
various subjects and tracks. These skills are desired outcomes that K to 12 graduates should possess in 
order to proceed to either higher education, employment, entrepreneurship, or middle-level skills 
development. 

On the other hand, the Commission declared the College Readiness Standards that consist of the 
combination of knowledge, skills, and reflective thinking necessary to participate and succeed - without 
remediation - in entry-level undergraduate courses in college. 

The alignment of both standards, shown below, is also presented in this Teaching Guide - prepares 
Senior High School graduates to the revised college curriculum which will initially be implemented by 
AY 2018-2019.

College Readiness Standards Foundational Skills DepEd Functional Skills

Produce all forms of texts (written, oral, visual, digital) based on: 
1. Solid grounding on Philippine experience and culture; 
2. An understanding of the self, community, and nation; 
3. Application of critical and creative thinking and doing processes; 
4. Competency in formulating ideas/arguments logically, scientifically, 

and creatively; and 
5. Clear appreciation of one’s responsibility as a citizen of a multicultural 

Philippines and a diverse world;

Visual and information literacies 
Media literacy 
Critical thinking and problem solving skills 
Creativity 
Initiative and self-direction

Systematically apply knowledge, understanding, theory, and skills 
for the development of the self, local, and global communities using 
prior learning, inquiry, and experimentation

Global awareness 
Scientific and economic literacy 
Curiosity 
Critical thinking and problem solving skills 
Risk taking 
Flexibility and adaptability 
Initiative and self-direction

Work comfortably with relevant technologies and develop 
adaptations and innovations for significant use in local and global 
communities;

Global awareness 
Media literacy 
Technological literacy 
Creativity 
Flexibility and adaptability 
Productivity and accountability

Communicate with local and global communities with proficiency, 
orally, in writing, and through new technologies of communication;

Global awareness 
Multicultural literacy 
Collaboration and interpersonal skills 
Social and cross-cultural skills 
Leadership and responsibility

Interact meaningfully in a social setting and contribute to the 
fulfilment of individual and shared goals, respecting the 
fundamental humanity of all persons and the diversity of groups 
and communities

Media literacy 
Multicultural literacy 
Global awareness 
Collaboration and interpersonal skills 
Social and cross-cultural skills 
Leadership and responsibility 
Ethical, moral, and spiritual values
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Correspondence*between*the*Learning*Competencies*and*the*Topics*in*this*Learning*Guide

Course*Title:"Basic"Calculus Semester:"Second"Semester
No.*of*Hours/Semester:"80"hrs/sem
Prerequisite:"Pre8Calculus

CONTENT CONTENT 
STANDARDS

PERFORMANCE 
STANDARDS

LEARNING COMPETENCIES CODE TOPIC 
NUMBER

The learners…

1.     illustrate the limit of a function using a table of 
values and the graph of the function

STEM_BC11LC-IIIa-1 1.1

2.     distinguish between limx→cf(x)!and f(c) STEM_BC11LC-IIIa-2 1.2
3.     illustrate the limit laws STEM_BC11LC-IIIa-3 1.3
4.     apply the limit laws in evaluating the limit of 
algebraic functions (polynomial, rational, and
radical)

STEM_BC11LC-IIIa-4 1.4

5.     compute the limits of exponential, logarithmic,and 
trigonometric functions using tables of values and 
graphs of the functions

STEM_BC11LC-IIIb-1 2.1

6.     evaluate limits involving the expressions (sint)/t , 

(1-cost)/t and (et - 1)/t using tables of values
STEM_BC11LC-IIIb-2 2.2

7.     illustrate continuity of a function at a number STEM_BC11LC-IIIc-1
8.    determine whether a function is continuous at a 
number or not

STEM_BC11LC-IIIc-2

9.     illustrate continuity of a function on an interval STEM_BC11LC-IIIc-3
10.  determine whether a function is continuous on an 
interval or not.

STEM_BC11LC-IIIc-4

Subject Description: At the end of the course, the students must know how to determine the limit of a function, differentiate, and integrate algebraic, 
exponential, logarithmic, and trigonometric functions in one variable, and to formulate and solve problems involving continuity, extreme values, related rates, 
population models, and areas of plane regions. 

3.1

3.2

Limits and
Continuity

The learners 
demonstrate an 
understanding of...

the basic concepts 
of limit and 
continuity of a 
function

The learners shall be able 
to...

formulate and solve 
accurately real-life 
problems involving 
continuity of functions
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CONTENT CONTENT 
STANDARDS

PERFORMANCE 
STANDARDS

LEARNING COMPETENCIES CODE TOPIC 
NUMBER

11.   illustrate different types of discontinuity
(hole/removable, jump/essential, asymptotic/infinite)

STEM_BC11LC-IIId-1 4.1

12.   illustrate the Intermediate Value and Extreme 
Value Theorems

STEM_BC11LC-IIId-2 4.2

13.   solves problems involving continuity of a function STEM_BC11LC-IIId-3 4.3
1.    illustrate the tangent line to the graph of a function 
at a given point

STEM_BC11D-IIIe-1 5.1

2.    applies the definition of the derivative of a function 
at a given number

STEM_BC11D-IIIe-2 5.3

3.    relate the derivative of a function to the slope of 
the tangent line

STEM_BC11D-IIIe-3 5.2

4.    determine the relationship between differentiability 
and continuity of a function

STEM_BC11D -IIIf-1 6.1

5.     derive the differentiation rules STEM_BC11D-IIIf-2
6.    apply the differentiation rules in computing the 
derivative of an algebraic, exponential, and
trigonometric functions

STEM_BC11D-IIIf-3

7.     solve optimization problems STEM_BC11D-IIIg-1 7.1
8.     compute higher-order derivatives of functions STEM_BC11D-IIIh-1 8.1
9.     illustrate the Chain Rule of differentiation STEM_BC11D-IIIh-2
10.   solve problems using the Chain Rule STEM_BC11D-IIIh-i-1
11.   illustrate implicit differentiation STEM_BC11D-IIIi-2
12.  solve problems (including logarithmic, and inverse 
trigonometric functions) using implicit
differentiation

STEM_BC11D-IIIi-j-1

13.   solve situational problems involving related rates STEM_BC11D-IIIj-2 10.1

6.2

8.2

9.1

Derivatives basic concepts of 
derivatives

1.    formulate and solve 
accurately situational 
problems involving 
extreme values

2.     formulate and solve 
accurately situational 
problems involving 
related rates
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CONTENT CONTENT 
STANDARDS

PERFORMANCE 
STANDARDS

LEARNING COMPETENCIES CODE TOPIC 
NUMBER

1.     illustrate an antiderivative of a function STEM_BC11I-IVa-1 11.1
2.     compute the general antiderivative of   
polynomial, radical, exponential, and trigonometric 
functions

STEM_BC11I-IVa-b-1 11.2J11.4

3.     compute the antiderivative of a function using 
substitution rule and table of integrals (includingthose 
whose antiderivatives involve logarithmic and inverse 
trigonometric functions)

STEM_BC11I-IVb-c-1 12.1

4.     solve separable differential equations using 
antidifferentiation

STEM_BC11I-IVd-1 13.1

5.     solve situational problems involving exponential 
growth and decay, bounded growth, and logistic growth STEM_BC11I-IVe-f-1 14.1

6.     approximate the area of a region under a curve 
using Riemann sums: (a) left, (b) right, and (c) 
midpoint

STEM_BC11I-IVg-1 15.1

7.     define the definite integral as the limit of the 
Riemann sums

STEM_BC11I-IVg-2 15.2

8.     illustrate the Fundamental Theorem of Calculus STEM_BC11I-IVh-1 16.1
9.    compute the definite integral of a function using 
the Fundamental Theorem of Calculus

STEM_BC11I-IVh-2 16.2

10.    illustrates the substitution rule STEM_BC11I-IVi-1
11.    compute the definite integral of a function using 
the substitution rule

STEM_BC11I-IVi-2

12.   compute the area of a plane region using the 
definite integral

STEM_BC11I-IVi-j-1 18.1

13.    solve problems involving areas of plane regions STEM_BC11I-IVj-2 18.2

Integration antiderivatives and
Riemann integral

1.     formulate and solve 
accurately situational 
problems involving 
population models

2.   formulate and solve 
accurately real-life 
problems involving areas 
of plane regions

17.1
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Limits and Continuity



LESSON 1: The Limit of a Function: Theorems and Examples

TIME FRAME: 4 hours

LEARNING OUTCOMES: At the end of the lesson, the learner shall be able to:

1. Illustrate the limit of a function using a table of values and the graph of the function;
2. Distinguish between lim

x!c
f(x) and f(c);

3. Illustrate the limit theorems; and
4. Apply the limit theorems in evaluating the limit of algebraic functions (polynomial, ratio-

nal, and radical).

LESSON OUTLINE:

1. Evaluation of limits using a table of values
2. Illustrating the limit of a function using the graph of the function
3. Distinguishing between lim

x!c
f(x) and f(c) using a table of values

4. Distinguishing between lim

x!c
f(x) and f(c) using the graph of y = f(x)

5. Enumeration of the eight basic limit theorems
6. Application of the eight basic limit theorems on simple examples
7. Limits of polynomial functions
8. Limits of rational functions
9. Limits of radical functions

10. Intuitive notions of infinite limits
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TOPIC 1.1: The Limit of a Function

DEVELOPMENT OF THE LESSON

(A) ACTIVITY

In order to find out what the students’ idea of a limit is, ask them to bring cutouts of
news items, articles, or drawings which for them illustrate the idea of a limit. These may
be posted on a wall so that they may see each other’s homework, and then have each one
explain briefly why they think their particular cutout represents a limit.

(B) INTRODUCTION

Limits are the backbone of calculus, and calculus is called the Mathematics of Change.
The study of limits is necessary in studying change in great detail. The evaluation of a
particular limit is what underlies the formulation of the derivative and the integral of a
function.

For starters, imagine that you are going to watch a basketball game. When you choose
seats, you would want to be as close to the action as possible. You would want to be as
close to the players as possible and have the best view of the game, as if you were in the
basketball court yourself. Take note that you cannot actually be in the court and join the
players, but you will be close enough to describe clearly what is happening in the game.

This is how it is with limits of functions. We will consider functions of a single variable and
study the behavior of the function as its variable approaches a particular value (a constant).
The variable can only take values very, very close to the constant, but it cannot equal the
constant itself. However, the limit will be able to describe clearly what is happening to the
function near that constant.

(C) LESSON PROPER

Consider a function f of a single variable x. Consider a constant c which the variable x

will approach (c may or may not be in the domain of f). The limit, to be denoted by L, is
the unique real value that f(x) will approach as x approaches c. In symbols, we write this
process as

lim

x!c
f(x) = L.

This is read, ‘ ‘The limit of f(x) as x approaches c is L.”
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LOOKING AT A TABLE OF VALUES

To illustrate, let us consider
lim

x!2

(1 + 3x).

Here, f(x) = 1+ 3x and the constant c, which x will approach, is 2. To evaluate the given
limit, we will make use of a table to help us keep track of the effect that the approach of x
toward 2 will have on f(x). Of course, on the number line, x may approach 2 in two ways:
through values on its left and through values on its right. We first consider approaching 2

from its left or through values less than 2. Remember that the values to be chosen should
be close to 2.

x f(x)

1 4

1.4 5.2

1.7 6.1

1.9 6.7

1.95 6.85

1.997 6.991

1.9999 6.9997

1.9999999 6.9999997

Now we consider approaching 2 from its right or through values greater than but close to 2.

x f(x)

3 10

2.5 8.5

2.2 7.6

2.1 7.3

2.03 7.09

2.009 7.027

2.0005 7.0015

2.0000001 7.0000003

Observe that as the values of x get closer and closer to 2, the values of f(x) get closer and
closer to 7. This behavior can be shown no matter what set of values, or what direction, is
taken in approaching 2. In symbols,

lim

x!2

(1 + 3x) = 7.
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EXAMPLE 1: Investigate
lim

x!�1

(x2 + 1)

by constructing tables of values. Here, c = �1 and f(x) = x2 + 1.

We start again by approaching �1 from the left.

x f(x)

�1.5 3.25

�1.2 2.44

�1.01 2.0201

�1.0001 2.00020001

Now approach �1 from the right.

x f(x)

�0.5 1.25

�0.8 1.64

�0.99 1.9801

�0.9999 1.99980001

The tables show that as x approaches �1, f(x) approaches 2. In symbols,

lim

x!�1

(x2 + 1) = 2.

EXAMPLE 2: Investigate lim

x!0

|x| through a table of values.

Approaching 0 from the left and from the right, we get the following tables:

x |x|
�0.3 0.3

�0.01 0.01

�0.00009 0.00009

�0.00000001 0.00000001

x |x|
0.3 0.3

0.01 0.01

0.00009 0.00009

0.00000001 0.00000001

Hence,
lim

x!0

|x| = 0.
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EXAMPLE 3: Investigate

lim

x!1

x2 � 5x+ 4

x� 1

by constructing tables of values. Here, c = 1 and f(x) =
x2 � 5x+ 4

x� 1

.

Take note that 1 is not in the domain of f , but this is not a problem. In evaluating a limit,
remember that we only need to go very close to 1; we will not go to 1 itself.
We now approach 1 from the left.

x f(x)

1.5 �2.5

1.17 �2.83

1.003 �2.997

1.0001 �2.9999

Approach 1 from the right.

x f(x)

0.5 �3.5

0.88 �3.12

0.996 �3.004

0.9999 �3.0001

The tables show that as x approaches 1, f(x) approaches �3. In symbols,

lim

x!1

x2 � 5x+ 4

x� 1

= �3.

EXAMPLE 4: Investigate through a table of values

lim

x!4

f(x)

if

f(x) =

8
<

:
x+ 1 if x < 4

(x� 4)

2

+ 3 if x � 4.

This looks a bit different, but the logic and procedure are exactly the same. We still
approach the constant 4 from the left and from the right, but note that we should evaluate
the appropriate corresponding functional expression. In this case, when x approaches 4

from the left, the values taken should be substituted in f(x) = x + 1. Indeed, this is the
part of the function which accepts values less than 4. So,

6



x f(x)

3.7 4.7

3.85 4.85

3.995 4.995

3.99999 4.99999

On the other hand, when x approaches 4 from the right, the values taken should be sub-
stituted in f(x) = (x� 4)

2

+ 3. So,

x f(x)

4.3 3.09

4.1 3.01

4.001 3.000001

4.00001 3.0000000001

Observe that the values that f(x) approaches are not equal, namely, f(x) approaches 5

from the left while it approaches 3 from the right. In such a case, we say that the limit of
the given function does not exist (DNE). In symbols,

lim

x!4

f(x) DNE.

Remark 1: We need to emphasize an important fact. We do not say that lim

x!4

f(x)

“equals DNE”, nor do we write “ lim
x!4

f(x) = DNE”, because “DNE” is not a value. In the
previous example, “DNE” indicated that the function moves in different directions as its
variable approaches c from the left and from the right. In other cases, the limit fails to
exist because it is undefined, such as for lim

x!0

1

x
which leads to division of 1 by zero.

Remark 2: Have you noticed a pattern in the way we have been investigating a limit? We
have been specifying whether x will approach a value c from the left, through values less
than c, or from the right, through values greater than c. This direction may be specified
in the limit notation, lim

x!c
f(x) by adding certain symbols.

• If x approaches c from the left, or through values less than c, then we write lim

x!c�
f(x).

• If x approaches c from the right, or through values greater than c, then we write
lim

x!c+
f(x).

Furthermore, we say
lim

x!c
f(x) = L

if and only if
lim

x!c�
f(x) = L and lim

x!c+
f(x) = L.
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In other words, for a limit L to exist, the limits from the left and from the right must both
exist and be equal to L. Therefore,

lim

x!c
f(x) DNE whenever lim

x!c�
f(x) 6= lim

x!c+
f(x).

These limits, lim

x!c�
f(x) and lim

x!c+
f(x), are also referred to as one-sided limits, since you

only consider values on one side of c.
Thus, we may say:

• in our very first illustration that lim

x!2

(1 + 3x) = 7 because lim

x!2

�
(1 + 3x) = 7 and

lim

x!2

+
(1 + 3x) = 7.

• in Example 1, lim

x!�1

(x2 + 1) = 2 since lim

x!�1

�
(x2 + 1) = 2 and lim

x!�1

+
(x2 + 1) = 2.

• in Example 2, lim

x!0

|x| = 0 because lim

x!0

�
|x| = 0 and lim

x!0

+
|x| = 0.

• in Example 3, lim

x!1

x2 � 5x+ 4

x� 1

= �3 because lim

x!1

�

x2 � 5x+ 4

x� 1

= �3 and

lim

x!1

+

x2 � 5x+ 4

x� 1

= �3.

• in Example 4, lim

x!4

f(x) DNE because lim

x!4

�
f(x) 6= lim

x!4

+
f(x).

LOOKING AT THE GRAPH OF y = f(x)

If one knows the graph of f(x), it will be easier to determine its limits as x approaches
given values of c.

Consider again f(x) = 1 + 3x. Its
graph is the straight line with slope
3 and intercepts (0, 1) and (�1/3, 0).
Look at the graph in the vicinity of
x = 2.

You can easily see the points (from
the table of values in page 4)
(1, 4), (1.4, 5.2), (1.7, 6.1), and so on,
approaching the level where y = 7.
The same can be seen from the right
(from the table of values in page 4).
Hence, the graph clearly confirms that

lim

x!2

(1 + 3x) = 7.
x

y

y = 1 + 3x

(2, 7)

�1 0 1 2 3 4

1

2

3

4

5

6

7

8
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Let us look at the examples again, one by one.

Recall Example 1 where f(x) = x2 + 1. Its graph is given by

�3 �2 �1 0 1 2 3

1

2

3

4

5

6

7

8

x

y

y = x2 + 1

(�1, 2)

It can be seen from the graph that as values of x approach �1, the values of f(x) approach
2.

Recall Example 2 where f(x) = |x|.

x

y

y = |x|

(0, 0)

It is clear that lim

x!0

|x| = 0, that is, the two sides of the graph both move downward to the
origin (0, 0) as x approaches 0.

Recall Example 3 where f(x) =
x2 � 5x+ 4

x� 1

.
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1 2 3 4

�4

�3

�2

�1

0

x

y

y =

x2 � 5x+ 4

x� 1

(1,�3)

Take note that f(x) =
x2 � 5x+ 4

x� 1

=

(x� 4)(x� 1)

x� 1

= x� 4, provided x 6= 1. Hence, the
graph of f(x) is also the graph of y = x� 1, excluding the point where x = 1.

Recall Example 4 where

f(x) =

8
<

:
x+ 1 if x < 4

(x� 4)

2

+ 3 if x � 4.

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

y = f(x)

(4, 5)

(4, 3)

Again, we can see from the graph that f(x) has no limit as x approaches 4. The two
separate parts of the function move toward different y-levels (y = 5 from the left, y = 3

from the right) in the vicinity of c = 4.
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So, in general, if we have the graph of a function, such as below, determining limits can be
done much faster and easier by inspection.

�3 �2 �1 0 1 2 3 4 5 6

1

2

3

4

5

6

x

y

(�2, 1)

(0, 3)

(3, 0)

(3, 2)

(3, 4)

For instance, it can be seen from the graph of y = f(x) that:

a. lim

x!�2

f(x) = 1.

b. lim

x!0

f(x) = 3. Here, it does not matter that f(0) does not exist (that is, it is undefined,
or x = 0 is not in the domain of f). Always remember that what matters is the behavior
of the function close to c = 0 and not precisely at c = 0. In fact, even if f(0) were
defined and equal to any other constant (not equal to 3), like 100 or �5000, this would
still have no bearing on the limit. In cases like this, lim

x!0

f(x) = 3 prevails regardless of
the value of f(0), if any.

c. lim

x!3

f(x) DNE. As can be seen in the figure, the two parts of the graph near c = 3 do
not move toward a common y-level as x approaches c = 3.

(D) EXERCISES (Students may use calculators when applicable.)

Exercises marked with a star (?) are challenging problems or may require a longer solution.

1. Complete the following tables of values to investigate lim

x!1

(x2 � 2x+ 4).
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x f(x)

0.5

0.7

0.95

0.995

0.9995

0.99995

x f(x)

1.6

1.35

1.05

1.005

1.0005

1.00005

2. Complete the following tables of values to investigate lim

x!0

x� 1

x+ 1

.

x f(x)

�1

�0.8

�0.35

�0.1

�0.09

�0.0003

�0.000001

x f(x)

1

0.75

0.45

0.2

0.09

0.0003

0.000001

3. Construct a table of values to investigate the following limits:

a. lim

x!3

10

x� 2

b. lim

x!7

10

x� 2

c. lim

x!2

2x+ 1

x� 3

d. lim

x!0

x2 + 6

x2 + 2

e. lim

x!1

1

x+ 1

f. lim

x!0

f(x) if f(x) =

8
<

:
1/x if x  �1

x2 � 2 if x > �1

g. lim

x!�1

f(x) if f(x) =

8
<

:
1/x if x  �1

x2 � 2 if x > �1

h. lim

x!1

f(x) if f(x) =

8
>>><

>>>:

x+ 3 if x < 1

2x if x = 1

p
5x� 1 if x > 1
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4. Consider the function f(x) whose graph is shown below.

x

y

1 2 3 4 5 6

�1�2�3�4�5

1

2

3

4

5

6

�1

�2

Determine the following:

a. lim

x!�3

f(x)

b. lim

x!�1

f(x)

c. lim

x!1

f(x)

d. lim

x!3

f(x)

e. lim

x!5

f(x)

5. Consider the function f(x) whose graph is shown below.

x

y

0 1 2 3 4 5 6

1

2

3

4

5

6

What can be said about the limit of
f(x)

a. at c = 1, 2, 3, and 4?

b. at integer values of c?

c. at c = 0.4, 2. 3, 4.7, and 5.5?

d. at non-integer values of c?
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6. Consider the function f(x) whose graph is shown below.

x

y

0

�1�2�3�4�5

1 2 3 4 5 6

1

2

3

4

5

6

�1

�2

�3

�4

�5

Determine the following:

a. lim

x!�1.5
f(x)

b. lim

x!0

f(x)

c. lim

x!2

f(x)

d. lim

x!4

f(x)

Teaching Tip

Test how well the students have understood limit evaluation. It is hoped that
by now they have observed that for polynomial and rational functions f , if c is
in the domain of f , then to evaluate lim

x!c
f(x) they just need to substitute the

value of c for every x in f(x).

However, this is not true for general functions. Ask the students if they can give
an example or point out an earlier example of a case where c is in the domain
of f , but lim

x!c
f(x) 6= f(c).

7. Without a table of values and without graphing f(x), give the values of the following
limits and explain how you arrived at your evaluation.

a. lim

x!�1

(3x� 5)

b. lim

x!c

x2 � 9

x2 � 4x+ 3

where c = 0, 1, 2

?c. lim

x!3

x2 � 9

x2 � 4x+ 3
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?8. Consider the function f(x) =
1

x
whose graph is shown below.

�4 �3 �2 �1 0 1 2 3 4

�5

�4

�3

�2

�1

1

2

3

4

5

x

y

f(x) =
1

x

What can be said about lim

x!0

f(x)? Does it exist or not? Why?

Answer: The limit does not exist. From the graph itself, as x-values approach 0, the
arrows move in opposite directions. If tables of values are constructed, one for x-values
approaching 0 through negative values and another through positive values, it is easy to
observe that the closer the x-values are to 0, the more negatively and positively large
the corresponding f(x)-values become.

?9. Consider the function f(x) whose graph is
shown below. What can be said about lim

x!0

f(x)?
Does it exist or not? Why?

Answer: The limit does not exist. Although as
x-values approach 0, the arrows seem to move
in the same direction, they will not “stop” at a
limiting value. In the absence of such a definite
limiting value, we still say the limit does not
exist. (We will revisit this function in the lesson
about infinite limits where we will discuss more
about its behavior near 0.)

�4 �3 �2 �1 0 1 2 3 4

1

2

3

4

5

6

7

8

x

y

f(x) =
1

x2
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?10. Sketch one possible graph of a function f(x) defined on R that satisfies all the listed
conditions.

a. lim

x!0

f(x) = 1

b. lim

x!1

f(x) DNE
c. lim

x!2

f(x) = 0

d. f(1) = 2

e. f(2) = 0

f. f(4) = 5

g. lim

x!c
f(x) = 5 for all c > 4.

Possible answer (there are many other possibilities):

x

y

1

�1

2

�2

3 4 5 60

1

2

3

4

5

6
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TOPIC 1.2: The Limit of a Function at c versus the Value of the
Function at c

DEVELOPMENT OF THE LESSON

(A) INTRODUCTION

Critical to the study of limits is the understanding that the value of

lim

x!c
f(x)

may be distinct from the value of the function at x = c, that is, f(c). As seen in previous
examples, the limit may be evaluated at values not included in the domain of f . Thus,
it must be clear to a student of calculus that the exclusion of a value from the domain of
a function does not prohibit the evaluation of the limit of that function at that excluded
value, provided of course that f is defined at the points near c. In fact, these cases are
actually the more interesting ones to investigate and evaluate.

Furthermore, the awareness of this distinction will help the student understand the concept
of continuity, which will be tackled in Lessons 3 and 4.

(B) LESSON PROPER

We will mostly recall our discussions and examples in Lesson 1.
Let us again consider

lim

x!2

(1 + 3x).

Recall that its tables of values are:

x f(x)

1 4

1.4 5.2

1.7 6.1

1.9 6.7

1.95 6.85

1.997 6.991

1.9999 6.9997

1.9999999 6.9999997

x f(x)

3 10

2.5 8.5

2.2 7.6

2.1 7.3

2.03 7.09

2.009 7.027

2.0005 7.0015

2.0000001 7.0000003

and we had concluded that lim

x!2

(1 + 3x) = 7.
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In comparison, f(2) = 7. So, in this example, lim
x!2

f(x) and f(2) are equal. Notice that the
same holds for the next examples discussed:

lim

x!c
f(x) f(c)

lim

x!�1

(x2 + 1) = 2 f(�1) = 2

lim

x!0

|x| = 0 f(0) = 0

This, however, is not always the case. Let us consider the function

f(x) =

8
<

:
|x| if x 6= 0

2 if x = 0.

In contrast to the second example above, the entries are now unequal:

lim

x!c
f(x) f(c)

lim

x!0

|x| = 0 f(0) = 2

Does this in any way affect the existence of the limit? Not at all. This example shows that
lim

x!c
f(x) and f(c) may be distinct.

Furthermore, consider the third example in Lesson 1 where

f(x) =

8
<

:
x+ 1 if x < 4

(x� 4)

2

+ 3 if x � 4.

We have:

lim

x!c
f(x) f(c)

lim

x!4

f(x) DNE f(4) = 2

Once again we see that lim

x!c
f(x) and f(c) are not the same.
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A review of the graph given in Lesson 1 (redrawn below) will emphasize this fact.

�3 �2 �1 0 1 2 3 4 5 6

1

2

3

4

5

6

x

y

(�2, 1)

(0, 3)

(3, 0)

(3, 2)

(3, 4)

We restate the conclusions, adding the respective values of f(c):

(a) lim

x!�2

f(x) = 1 and f(�2) = 1.

(b) lim

x!0

f(x) = 3 and f(0) does not exist (or is undefined).

(c) lim

x!3

f(x) DNE and f(3) also does not exist (or is undefined).

(C) EXERCISES

1. Consider the function f(x) whose graph is given below.

�5 �4 �3 �2 �1 0 1 2 3 4 5 6

1

2

3

4

5

6

x

y

19



Based on the graph, fill in the table with the appropriate values.

c lim

x!c
f(x) f(c)

�2

�1/2

0

1

3

4

2. For each given combination of values of lim

x!c
f(x) and f(c), sketch the graph of a

possible function that illustrates the combination. For example, if lim

x!1

f(x) = 2 and
f(1) = 3, then a possible graph of f(x) near x = 1 may be any of the two graphs
below.

�3 �2 �1 0 1 2 3 4

1

2

3

4

5

6

x

y

�3 �2 �1 0 1 2 3 4

1

2

3

4

5

6

x

y

Do a similar rendition for each of the following combinations:

i. lim

x!1

f(x) = 2 and f(1) = 2

ii. lim

x!1

g(x) = �1 and g(1) = 1

iii. lim

x!1

h(x) DNE and h(1) = 0

iv. lim

x!1

j(x) = 2 and j(1) is undefined

v. lim

x!1

p(x) DNE and p(1) is undefined
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3. Consider the function f(x) whose graph is given below.

x

y

0 1 2 3 4 5 6 7

�1�2�3�4�5�6

1

2

3

4

5

6

State whether lim

x!c
f(x) and f(c) are equal or unequal at the given value of c. Also,

state whether lim

x!c
f(x) or f(c) does not exist.

i. c = �3

ii. c = �2

iii. c = 0

iv. c = 0.5

v. c = 1

vi. c = 2

vii. c = 2.3

viii. c = 3

ix. c = 4

x. c = 6
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TOPIC 1.3: Illustration of Limit Theorems

DEVELOPMENT OF THE LESSON

(A) INTRODUCTION

Lesson 1 showed us how limits can be determined through either a table of values or the
graph of a function. One might ask: Must one always construct a table or graph the
function to determine a limit? Filling in a table of values sometimes requires very tedious
calculations. Likewise, a graph may be difficult to sketch. However, these should not be
reasons for a student to fail to determine a limit.

In this lesson, we will learn how to compute the limit of a function using Limit Theorems.

Teaching Tip

It would be good to recall the parts of Lesson 1 where the students were asked to
give the value of a limit, without aid of a table or a graph. Those exercises were
intended to lead to the Limit Theorems. These theorems are a formalization of
what they had intuitively concluded then.

(B) LESSON PROPER

We are now ready to list down the basic theorems on limits. We will state eight theorems.
These will enable us to directly evaluate limits, without need for a table or a graph.

In the following statements, c is a constant, and f and g are functions which may or may
not have c in their domains.

1. The limit of a constant is itself. If k is any constant, then,

lim

x!c
k = k.

For example,

i. lim

x!c
2 = 2

ii. lim

x!c
�3.14 = �3.14

iii. lim

x!c
789 = 789
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2. The limit of x as x approaches c is equal to c. This may be thought of as the substitution
law, because x is simply substituted by c.

lim

x!c
x = c.

For example,

i. lim

x!9

x = 9

ii. lim

x!0.005
x = 0.005

iii. lim

x!�10

x = �10

For the remaining theorems, we will assume that the limits of f and g both exist as x

approaches c and that they are L and M , respectively. In other words,

lim

x!c
f(x) = L, and lim

x!c
g(x) = M.

3. The Constant Multiple Theorem: This says that the limit of a multiple of a function is
simply that multiple of the limit of the function.

lim

x!c
k · f(x) = k · lim

x!c
f(x) = k · L.

For example, if lim

x!c
f(x) = 4, then

i. lim

x!c
8 · f(x) = 8 · lim

x!c
f(x) = 8 · 4 = 32.

ii. lim

x!c
�11 · f(x) = �11 · lim

x!c
f(x) = �11 · 4 = �44.

iii. lim

x!c

3

2

· f(x) = 3

2

· lim
x!c

f(x) =
3

2

· 4 = 6.

4. The Addition Theorem: This says that the limit of a sum of functions is the sum of the
limits of the individual functions. Subtraction is also included in this law, that is, the
limit of a difference of functions is the difference of their limits.

lim

x!c
( f(x) + g(x) ) = lim

x!c
f(x) + lim

x!c
g(x) = L+M.

lim

x!c
( f(x)� g(x) ) = lim

x!c
f(x)� lim

x!c
g(x) = L�M.

For example, if lim

x!c
f(x) = 4 and lim

x!c
g(x) = �5 , then

i. lim

x!c
(f(x) + g(x)) = lim

x!c
f(x) + lim

x!c
g(x) = 4 + (�5) = �1.

ii. lim

x!c
(f(x)� g(x)) = lim

x!c
f(x)� lim

x!c
g(x) = 4� (�5) = 9.
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5. The Multiplication Theorem: This is similar to the Addition Theorem, with multipli-
cation replacing addition as the operation involved. Thus, the limit of a product of
functions is equal to the product of their limits.

lim

x!c
(f(x) · g(x)) = lim

x!c
f(x) · lim

x!c
g(x) = L ·M.

Again, let lim

x!c
f(x) = 4 and lim

x!c
g(x) = �5. Then

lim

x!c
f(x) · g(x) = lim

x!c
f(x) · lim

x!c
g(x) = 4 · (�5) = �20.

Remark 1: The Addition and Multiplication Theorems may be applied to sums, dif-
ferences, and products of more than two functions.

Remark 2: The Constant Multiple Theorem is a special case of the Multiplication
Theorem. Indeed, in the Multiplication Theorem, if the first function f(x) is replaced
by a constant k, the result is the Constant Multiple Theorem.

6. The Division Theorem: This says that the limit of a quotient of functions is equal to
the quotient of the limits of the individual functions, provided the denominator limit is
not equal to 0.

lim

x!c

f(x)

g(x)
=

lim

x!c
f(x)

lim

x!c
g(x)

=

L

M
, provided M 6= 0.

For example,

i. If lim

x!c
f(x) = 4 and lim

x!c
g(x) = �5,

lim

x!c

f(x)

g(x)
=

lim

x!c
f(x)

lim

x!c
g(x)

=

4

�5

= �4

5

.

ii. If lim

x!c
f(x) = 0 and lim

x!c
g(x) = �5,

lim

x!c

f(x)

g(x)
=

0

�5

= 0.
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iii. If lim

x!c
f(x) = 4 and lim

x!c
g(x) = 0, it is not possible to evaluate lim

x!c

f(x)

g(x)
, or we

may say that the limit DNE.

7. The Power Theorem: This theorem states that the limit of an integer power p of a
function is just that power of the limit of the function.

lim

x!c
(f(x))p = (lim

x!c
f(x))p = Lp.

For example,

i. If lim

x!c
f(x) = 4, then

lim

x!c
(f(x))3 = (lim

x!c
f(x))3 = 4

3

= 64.

ii. If lim

x!c
f(x) = 4, then

lim

x!c
(f(x))�2

= (lim

x!c
f(x))�2

= 4

�2

=

1

4

2

=

1

16

.

8. The Radical/Root Theorem: This theorem states that if n is a positive integer, the limit
of the nth root of a function is just the nth root of the limit of the function, provided
the nth root of the limit is a real number. Thus, it is important to keep in mind that if
n is even, the limit of the function must be positive.

lim

x!c

n

p
f(x) = n

q
lim

x!c
f(x) =

n

p
L.

For example,

i. If lim

x!c
f(x) = 4, then

lim

x!c

p
f(x) =

q
lim

x!c
f(x) =

p
4 = 2.

ii. If lim

x!c
f(x) = �4, then it is not possible to evaluate lim

x!c

p
f(x) because then,

q
lim

x!c
f(x) =

p
�4,

and this is not a real number.
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(C) EXERCISES

1. Complete the following table.

c lim

x!c
2016 lim

x!c
x

�2

�1/2

0

3.1416

10p
3

2. Assume the following:

lim

x!c
f(x) =

3

4

, lim

x!c
g(x) = 12, and lim

x!c
h(x) = �3.

Compute the following limits:

a. lim

x!c
(�4 · f(x))

b. lim

x!c

p
12 · f(x)

c. lim

x!c
(g(x)� h(x))

d. lim

x!c
(f(x) · g(x))

e. lim

x!c

g(x) + h(x)

f(x)

f. lim

x!c

✓
f(x)

h(x)
· g(x)

◆

g. lim

x!c
(4 · f(x) + h(x))

h. lim

x!c
(8 · f(x)� g(x)� 2 · h(x))

i. lim

x!c
(f(x) · g(x) · h(x))

j. lim

x!c

p
�g(x) · h(x)

k. lim

x!c

g(x)

(h(x))2

l. lim

x!c

g(x)

(h(x))2
· f(x)

3. Determine whether the statement is True or False. If it is false, explain what makes it
false, or provide a counterexample.

a. If lim

x!c
f(x) and lim

x!c
g(x) both exist, then lim

x!c
(f(x)± g(x)) always exists.

b. If lim

x!c
f(x) and lim

x!c
g(x) both exist, then lim

x!c
(f(x) · g(x)) always exists.

c. If lim

x!c
f(x) and lim

x!c
g(x) both exist, then lim

x!c

f(x)

g(x)
always exists.

d. If lim

x!c
f(x) exists and p is an integer, then lim

x!c
(f(x))p, where p is an integer, always

exists.
e. If lim

x!c
f(x) exists and n is a natural number, then lim

x!c

n

p
f(x), always exists.

?f. If lim

x!c
(f(x)� g(x)) = 0, then lim

x!c
f(x) and lim

x!c
g(x) are equal. Answer: False.

(Take f(x) =
1

x
= g(x) and c = 0.)

?g. If lim

x!c

f(x)

g(x)
= 1, then lim

x!c
f(x) and lim

x!c
g(x) are equal. Answer: False. (Take

f(x) =
1

x
= g(x) and c = 0.)
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4. Assume the following:

lim

x!c
f(x) = 1, lim

x!c
g(x) = �1, and lim

x!c
h(x) = 2.

Compute the following limits:

a. lim

x!c
(f(x) + g(x))

b. lim

x!c
(f(x)� g(x)� h(x))

c. lim

x!c
(3 · g(x) + 5 · h(x))

d. lim

x!c

p
f(x)

e. lim

x!c

p
g(x)

f. lim

x!c

3
p
g(x)

g. lim

x!c
(h(x))5

h. lim

x!c

g(x)� f(x)

h(x)

i. lim

x!c

⇣
f(x) · g(x) · (h(x))2

⌘

j. lim

x!c

1

f(x)

k. lim

x!c

1

g(x)

l. lim

x!c

1

h(x)

m. lim

x!c

1

f(x)� h(x)

n. lim

x!c

1

f(x) + g(x)

5. Assume f(x) = x. Evaluate

a. lim

x!4

f(x).

b. lim

x!4

1

f(x)
.

c. lim

x!4

1

(f(x))2
.

d. lim

x!4

�
p

f(x).

e. lim

x!4

p
9 · f(x).

f. lim

x!4

((f(x))2 � f(x)).

g. lim

x!4

((f(x))3 + (f(x))2 + 2 · f(x)).

h. lim

x!4

n

p
3 · (f(x))2 + 4 · f(x).

i. lim

x!4

(f(x))2 � f(x)

5 · f(x) .

j. lim

x!4

(f(x))2 � 4f(x)

(f(x))2 + 4f(x)
.
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TOPIC 1.4: Limits of Polynomial, Rational, and Radical Func-
tions

DEVELOPMENT OF THE LESSON

(A) INTROUCTION
In the previous lesson, we presented and illustrated the limit theorems. We start by recalling
these limit theorems.

Theorem 1. Let c, k, L and M be real numbers, and let f(x) and g(x) be functions defined
on some open interval containing c, except possibly at c.

1. If lim

x!c
f(x) exists, then it is unique. That is, if lim

x!c
f(x) = L and lim

x!c
f(x) = M , then

L = M .

2. lim

x!c
c = c.

3. lim

x!c
x = c

4. Suppose lim

x!c
f(x) = L and lim

x!c
g(x) = M .

i. (Constant Multiple) lim

x!c
[k · g(x)] = k ·M .

ii. (Addition) lim

x!c
[f(x)± g(x)] = L±M .

iii. (Multiplication) lim

x!c
[f(x)g(x)] = LM .

iv. (Division) lim

x!c

f(x)

g(x)
=

L

M
, provided M 6= 0.

v. (Power) lim

x!c
[f(x)]p = Lp for p, a positive integer.

vi. (Root/Radical) lim

x!c

n

p
f(x) =

n

p
L for positive integers n, and provided that L > 0

when n is even.

Teaching Tip

It would be helpful for the students if these limit theorems remain written on the
board or on manila paper throughout the discussion of this lesson.

In this lesson, we will show how these limit theorems are used in evaluating algebraic func-
tions. Particularly, we will illustrate how to use them to evaluate the limits of polynomial,
rational and radical functions.

(B) LESSON PROPER

LIMITS OF ALGEBRAIC FUNCTIONS

We start with evaluating the limits of polynomial functions.
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EXAMPLE 1: Determine lim

x!1

(2x+ 1).

Solution. From the theorems above,

lim

x!1

(2x+ 1) = lim

x!1

2x+ lim

x!1

1 (Addition)

=

✓
2 lim

x!1

x

◆
+ 1 (Constant Multiple)

= 2(1) + 1

✓
lim

x!c
x = c

◆

= 2 + 1

= 3.

.

EXAMPLE 2: Determine lim

x!�1

(2x3 � 4x2 + 1).

Solution. From the theorems above,

lim

x!�1

(2x3 � 4x2 + 1) = lim

x!�1

2x3 � lim

x!�1

4x2 + lim

x!�1

1 (Addition)

= 2 lim

x!�1

x3 � 4 lim

x!�1

x2 + 1 (Constant Multiple)

= 2(�1)

3 � 4(�1)

2

+ 1 (Power)
= �2� 4 + 1

= �5.

.

EXAMPLE 3: Evaluate lim

x!0

(3x4 � 2x� 1).

Solution. From the theorems above,

lim

x!0

(3x4 � 2x� 1) = lim

x!0

3x4 � lim

x!0

2x� lim

x!0

1 (Addition)

= 3 lim

x!0

x4 � 2 lim

x!0

x2 � 1 (Constant Multiple)

= 3(0)

4 � 2(0)� 1 (Power)
= 0� 0� 1

= �1.

.

We will now apply the limit theorems in evaluating rational functions. In evaluating the
limits of such functions, recall from Theorem 1 the Division Rule, and all the rules stated
in Theorem 1 which have been useful in evaluating limits of polynomial functions, such as
the Addition and Product Rules.
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EXAMPLE 4: Evaluate lim

x!1

1

x
.

Solution. First, note that lim

x!1

x = 1. Since the limit of the denominator is nonzero, we can
apply the Division Rule. Thus,

lim

x!1

1

x
=

lim

x!1

1

lim

x!1

x
(Division)

=

1

1

= 1.

.

EXAMPLE 5: Evaluate lim

x!2

x

x+ 1

.

Solution. We start by checking the limit of the polynomial function in the denominator.

lim

x!2

(x+ 1) = lim

x!2

x+ lim

x!2

1 = 2 + 1 = 3.

Since the limit of the denominator is not zero, it follows that

lim

x!2

x

x+ 1

=

lim

x!2

x

lim

x!2

(x+ 1)

=

2

3

(Division)

.

EXAMPLE 6: Evaluate lim

x!1

(x� 3)(x2 � 2)

x2 + 1

. First, note that

lim

x!1

(x2 + 1) = lim

x!1

x2 + lim

x!1

1 = 1 + 1 = 2 6= 0.

Thus, using the theorem,

lim

x!1

(x� 3)(x2 � 2)

x2 + 1

=

lim

x!1

(x� 3)(x2 � 2)

lim

x!1

(x2 + 1)

(Division)

=

lim

x!1

(x� 3) · lim
x!1

(x2 � 2)

2

(Multipication)

=

✓
lim

x!1

x� lim

x!1

3

◆✓
lim

x!1

x2 � lim

x!1

2

◆

2

(Addition)

=

(1� 3)(1

2 � 2)

2

= 1.
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Theorem 2. Let f be a polynomial of the form

f(x) = anx
n
+ an�1

xn�1

+ an�2

xn�2

+ ...+ a
1

x+ a
0

.

If c is a real number, then
lim

x!c
f(x) = f(c).

Proof. Let c be any real number. Remember that a polynomial is defined at any real
number. So,

f(c) = anc
n
+ an�1

cn�1

+ an�2

cn�2

+ ...+ a
1

c+ a
0

.

Now apply the limit theorems in evaluating lim

x!c
f(x):

lim

x!c
f(x) = lim

x!c
(anx

n
+ an�1

xn�1

+ an�2

xn�2

+ ...+ a
1

x+ a
0

)

= lim

x!c
anx

n
+ lim

x!c
an�1

xn�1

+ lim

x!c
an�2

xn�2

+ ...+ lim

x!c
a
1

x+ lim

x!c
a
0

= an lim

x!c
xn + an�1

lim

x!c
xn�1

+ an�2

lim

x!c
xn�2

+ ...+ a
1

lim

x!c
x+ a

0

= anc
n
+ an�1

cn�1

+ an�2

cn�2

+ ...+ a
1

c+ a
0

= f(c).

Therefore, lim
x!c

f(x) = f(c).

EXAMPLE 7: Evaluate lim

x!�1

(2x3 � 4x2 + 1).

Solution. Note first that our function

f(x) = 2x3 � 4x2 + 1,

is a polynomial. Computing for the value of f at x = �1, we get

f(�1) = 2(�1)

3 � 4(�1)

2

+ 1 = 2(�1)� 4(1) + 1 = �5.

Therefore, from Theorem 2,

lim

x!�1

(2x3 � 4x2 + 1) = f(�1) = �5.

.

Note that we get the same answer when we use limit theorems.

Theorem 3. Let h be a rational function of the form h(x) =

f(x)

g(x)
where f and g are

polynomial functions. If c is a real number and g(c) 6= 0, then

lim

x!c
h(x) = lim

x!c

f(x)

g(x)
=

f(c)

g(c)
.
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Proof. From Theorem 2, lim

x!c
g(x) = g(c), which is nonzero by assumption. Moreover,

lim

x!c
f(x) = f(c). Therefore, by the Division Rule of Theorem 1,

lim

x!c

f(x)

g(x)
=

lim

x!c
f(x)

lim

x!c
g(x)

=

f(c)

g(c)
.

EXAMPLE 8: Evaluate lim

x!1

1� 5x

1 + 3x2 + 4x4
.

Solution. Since the denominator is not zero when evaluated at x = 1, we may apply
Theorem 3:

lim

x!1

1� 5x

1 + 3x2 + 4x4
=

1� 5(1)

1 + 3(1)

2

+ 4(1)

4

=

�4

8

= �1

2

.

.

We will now evaluate limits of radical functions using limit theorems.

EXAMPLE 9: Evaluate lim

x!1

p
x.

Solution. Note that lim

x!1

x = 1 > 0. Therefore, by the Radical/Root Rule,

lim

x!1

p
x =

q
lim

x!1

x =

p
1 = 1.

.

EXAMPLE 10: Evaluate lim

x!0

p
x+ 4.

Solution. Note that lim

x!0

(x+ 4) = 4 > 0. Hence, by the Radical/Root Rule,

lim

x!0

p
x+ 4 =

q
lim

x!0

(x+ 4) =

p
4 = 2.

.

EXAMPLE 11: Evaluate lim

x!�2

3
p

x2 + 3x� 6.

Solution. Since the index of the radical sign is odd, we do not have to worry that the limit
of the radicand is negative. Therefore, the Radical/Root Rule implies that

lim

x!�2

3
p
x2 + 3x� 6 =

3

r
lim

x!�2

(x2 + 3x� 6) =

3
p
4� 6� 6 =

3
p
�8 = �2.

.
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EXAMPLE 12: Evaluate lim

x!2

p
2x+ 5

1� 3x
.

Solution. First, note that lim

x!2

(1 � 3x) = �5 6= 0. Moreover, lim

x!2

(2x + 5) = 9 > 0. Thus,
using the Division and Radical Rules of Theorem 1, we obtain

lim

x!2

p
2x+ 5

1� 3x
=

lim

x!2

p
2x+ 5

lim

x!2

1� 3x
=

q
lim

x!2

(2x+ 5)

�5

=

p
9

�5

= �3

5

.

.

INTUITIVE NOTIONS OF INFINITE LIMITS
We investigate the limit at a point c of a rational function of the form

f(x)

g(x)
where f and g

are polynomial functions with f(c) 6= 0 and g(c) = 0. Note that Theorem 3 does not cover
this because it assumes that the denominator is nonzero at c.

Now, consider the function f(x) =

1

x2
.

Note that the function is not defined at
x = 0 but we can check the behavior of the
function as x approaches 0 intuitively. We
first consider approaching 0 from the left.

�4 �3 �2 �1 0 1 2 3 4

1

2

3

4

5

6

7

8

x

y

f(x) =
1

x2

x f(x)

�0.9 1.2345679

�0.5 4

�0.1 100

�0.01 10, 000

�0.001 1, 000, 000

�0.0001 100, 000, 000

Observe that as x approaches 0 from the left, the value of the function increases without
bound. When this happens, we say that the limit of f(x) as x approaches 0 from the left
is positive infinity, that is,

lim

x!0

�
f(x) = +1.
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x f(x)

0.9 1.2345679

0.5 4

0.1 100

0.01 10, 000

0.001 1, 000, 000

0.0001 100, 000, 000

Again, as x approaches 0 from the right, the value of the function increases without bound,
so, lim

x!0

+
f(x) = +1.

Since lim

x!0

�
f(x) = +1 and lim

x!0

+
f(x) = +1, we may conclude that lim

x!0

f(x) = +1.

Now, consider the function f(x) = � 1

x2
.

Note that the function is not defined at x =

0 but we can still check the behavior of the
function as x approaches 0 intuitively. We
first consider approaching 0 from the left.

�4 �3 �2 �1

0 1 2 3 4

�1

�2

�3

�4

�5

�6

�7

�8

x

y

f(x) = � 1

x2

x f(x)

�0.9 �1.2345679

�0.5 �4

�0.1 �100

�0.01 �10, 000

�0.001 �1, 000, 000

�0.0001 �100, 000, 000

This time, as x approaches 0 from the left, the value of the function decreases without
bound. So, we say that the limit of f(x) as x approaches 0 from the left is negative infinity,
that is,

lim

x!0

�
f(x) = �1.
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x f(x)

0.9 �1.2345679

0.5 �4

0.1 �100

0.01 �10, 000

0.001 �1, 000, 000

0.0001 �100, 000, 000

As x approaches 0 from the right, the value of the function also decreases without bound,
that is, lim

x!0

+
f(x) = �1.

Since lim

x!0

�
f(x) = �1 and lim

x!0

+
f(x) = �1, we are able to conclude that lim

x!0

f(x) = �1.

We now state the intuitive definition of infinite limits of functions:

The limit of f(x) as x approaches c is positive infinity, denoted by,

lim

x!c
f(x) = +1

if the value of f(x) increases without bound whenever the values of x get closer and closer
to c. The limit of f(x) as x approaches c is negative infinity, denoted by,

lim

x!c
f(x) = �1

if the value of f(x) decreases without bound whenever the values of x get closer and closer
to c.

Let us consider f(x) =

1

x
. The graph on

the right suggests that

lim

x!0

�
f(x) = �1

while
lim

x!0

+
f(x) = +1.

Because the one-sided limits are not the
same, we say that

lim

x!0

f(x) DNE.

�4 �3 �2 �1 0 1 2 3 4

�5

�4

�3

�2

�1

1

2

3

4

5

x

y

f(x) =
1

x

Remark 1: Remember that 1 is NOT a number. It holds no specific value. So, lim
x!c

f(x) =

+1 or lim

x!c
f(x) = �1 describes the behavior of the function near x = c, but it does not

exist as a real number.
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Remark 2: Whenever lim

x!c+
f(x) = ±1 or lim

x!c�
f(x) = ±1, we normally see the dashed

vertical line x = c. This is to indicate that the graph of y = f(x) is asymptotic to x = c,
meaning, the graphs of y = f(x) and x = c are very close to each other near c. In this case,
we call x = c a vertical asymptote of the graph of y = f(x).

Teaching Tip

Computing infinite limits is not a learning objective of this course, however, we will
be needing this notion for the discussion on infinite essential discontinuity, which
will be presented in Topic 4.1. It is enough that the student determines that the
limit at the point c is +1 or �1 from the behavior of the graph, or the trend of
the y-coordinates in a table of values.

(C) EXERCISES

I. Evaluate the following limits.

1. lim

w!1

(1 +

3
p
w)(2� w2

+ 3w3

)

2. lim

t!�2

t2 � 1

t2 + 3t� 1

3. lim

z!2

✓
2z + z2

z2 + 4

◆
3

4. lim

x!0

x2 � x� 2

x3 � 6x2 � 7x+ 1

5. lim

y!�2

4� 3y2 � y3

6� y � y2

6. lim

x!�1

x3 � 7x2 + 14x� 8

2x2 � 3x� 4

7. lim

x!�1

p
x2 + 3� 2

x2 + 1

8. lim

x!2

p
2x�

p
6� x

4 + x2

II. Complete the following tables.

x
x� 5

x� 3

x

x2 � 6x+ 9

2.5

2.8

2.9

2.99

2.999

2.9999

x
x� 5

x� 3

x

x2 � 6x+ 9

3.5

3.2

3.1

3.01

3.001

3.0001

From the table, determine the following limits.

1. lim

x!3

�

x� 5

x� 3

2. lim

x!3

+

x� 5

x� 3

3. lim

x!3

x� 5

x� 3

4. lim

x!3

�

x

x2 � 6x+ 9

5. lim

x!3

+

x

x2 � 6x+ 9

6. lim

x!3

x

x2 � 6x+ 9
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III. Recall the graph of y = cscx. From the behavior of the graph of the cosecant function,
determine if the following limits evaluate to +1 or to �1.

1. lim

x!0

�
cscx

2. lim

x!0

+
cscx

3. lim

x!⇡�
cscx

4. lim

x!⇡+
cscx

IV. Recall the graph of y = tanx.

1. Find the value of c 2 (0,⇡) such that lim

x!c�
tanx = +1.

2. Find the value of d 2 (⇡, 2⇡) such that lim

x!d+
tanx = �1.
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LESSON 2: Limits of Some Transcendental Functions and Some
Indeterminate Forms

TIME FRAME: 4 hours

LEARNING OUTCOMES: At the end of the lesson, the learner shall be able to:

1. Compute the limits of exponential, logarithmic, and trigonometric functions using tables
of values and graphs of the functions;

2. Evaluate the limits of expressions involving
sin t

t
,
1� cos t

t
, and

et � 1

t
using tables of

values; and

3. Evaluate the limits of expressions resulting in the indeterminate form “ 0
0

”.

LESSON OUTLINE:

1. Exponential functions
2. Logarithmic functions
3. Trigonometric functions

4. Evaluating lim

t!0

sin t

t

5. Evaluating lim

t!0

1� cos t

t

6. Evaluating lim

t!0

et � 1

t

7. Indeterminate form “ 0
0

”
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TOPIC 2.1: Limits of Exponential, Logarithmic, and Trigonomet-
ric Functions

DEVELOPMENT OF THE LESSON

(A) INTRODUCTION
Real-world situations can be expressed in terms of functional relationships. These func-
tional relationships are called mathematical models. In applications of calculus, it is quite
important that one can generate these mathematical models. They sometimes use functions
that you encountered in precalculus, like the exponential, logarithmic, and trigonometric
functions. Hence, we start this lesson by recalling these functions and their corresponding
graphs.

(a) If b > 0, b 6= 1, the exponential function with base b is defined by

f(x) = bx, x 2 R.

(b) Let b > 0, b 6= 1. If by = x then y is called the logarithm of x to the base b, denoted
y = logb x.

Teaching Tip

Allow students to use their calculators.

(B) LESSON PROPER

EVALUATING LIMITS OF EXPONENTIAL FUNCTIONS

First, we consider the natural exponential function f(x) = ex, where e is called the Euler
number, and has value 2.718281....

EXAMPLE 1: Evaluate the lim

x!0

ex.

Solution. We will construct the table of values for f(x) = ex. We start by approaching the
number 0 from the left or through the values less than but close to 0.

Teaching Tip

Some students may not be familiar with the natural number e on their scientific
calculators. Demonstrate to them how to properly input powers of e on their
calculators .
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x f(x)

�1 0.36787944117

�0.5 0.60653065971

�0.1 0.90483741803

�0.01 0.99004983374

�0.001 0.99900049983

�0.0001 0.999900049983

�0.00001 0.99999000005

Intuitively, from the table above, lim

x!0

�
ex = 1. Now we consider approaching 0 from its

right or through values greater than but close to 0.

x f(x)

1 2.71828182846

0.5 1.6487212707

0.1 1.10517091808

0.01 1.01005016708

0.001 1.00100050017

0.0001 1.000100005

0.00001 1.00001000005

From the table, as the values of x get closer and closer to 0, the values of f(x) get closer
and closer to 1. So, lim

x!0

+
ex = 1. Combining the two one-sided limits allows us to conclude

that
lim

x!0

ex = 1.

.

We can use the graph of f(x) = ex to determine its limit as x approaches 0. The figure
below is the graph of f(x) = ex.

Looking at Figure 1.1, as the values of x approach 0, either
from the right or the left, the values of f(x) will get closer
and closer to 1. We also have the following:

(a) lim

x!1

ex = e = 2.718...

(b) lim

x!2

ex = e2 = 7.389...

(c) lim

x!�1

ex = e�1

= 0.367...

�3 �2 �1 0 1 2 3

x

y

1

y = ex
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EVALUATING LIMITS OF LOGARITHMIC FUNCTIONS

Now, consider the natural logarithmic function f(x) = lnx. Recall that lnx = loge x.
Moreover, it is the inverse of the natural exponential function y = ex.

EXAMPLE 2: Evaluate lim

x!1

lnx.

Solution. We will construct the table of values for f(x) = lnx. We first approach the
number 1 from the left or through values less than but close to 1.

x f(x)

0.1 �2.30258509299

0.5 �0.69314718056

0.9 �0.10536051565

0.99 �0.01005033585

0.999 �0.00100050033

0.9999 �0.000100005

0.99999 �0.00001000005

Intuitively, lim

x!1

�
lnx = 0. Now we consider approaching 1 from its right or through values

greater than but close to 1.

x f(x)

2 0.69314718056

1.5 0.4054651081

1.1 0.0953101798

1.01 0.00995033085

1.001 0.00099950033

1.0001 0.000099995

1.00001 0.00000999995

Intuitively, lim

x!1

+
lnx = 0. As the values of x get closer and closer to 1, the values of f(x)

get closer and closer to 0. In symbols,

lim

x!1

lnx = 0.

.

We now consider the common logarithmic function f(x) = log

10

x. Recall that f(x) =

log

10

x = log x.
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EXAMPLE 3: Evaluate lim

x!1

log x.

Solution. We will construct the table of values for f(x) = log x. We first approach the
number 1 from the left or through the values less than but close to 1.

x f(x)

0.1 �1

0.5 �0.30102999566

0.9 �0.04575749056

0.99 �0.0043648054

0.999 �0.00043451177

0.9999 �0.00004343161

0.99999 �0.00000434296

Now we consider approaching 1 from its right or through values greater than but close to 1.

x f(x)

2 0.30102999566

1.5 0.17609125905

1.1 0.04139268515

1.01 0.00432137378

1.001 0.00043407747

1.0001 0.00004342727

1.00001 0.00000434292

As the values of x get closer and closer to 1, the values of f(x) get closer and closer to 0.
In symbols,

lim

x!1

log x = 0.

.

Consider now the graphs of both the natural and common logarithmic functions. We can
use the following graphs to determine their limits as x approaches 1..
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x

1 2 3 4 5 6 7

f(x) = lnx

0

x

f(x) = log x
0

The figure helps verify our observations that lim

x!1

lnx = 0 and lim

x!1

log x = 0. Also, based
on the figure, we have

(a) lim

x!e
lnx = 1

(b) lim

x!10

log x = 1

(c) lim

x!3

lnx = ln 3 = 1.09...

(d) lim

x!3

log x = log 3 = 0.47...

(e) lim

x!0

+
lnx = �1

(f) lim

x!0

+
log x = �1

TRIGONOMETRIC FUNCTIONS

EXAMPLE 4: Evaluate lim

x!0

sinx.

Solution. We will construct the table of values for f(x) = sinx. We first approach 0 from
the left or through the values less than but close to 0.

x f(x)

�1 �0.8414709848

�0.5 �0.4794255386

�0.1 �0.09983341664

�0.01 �0.00999983333

�0.001 �0.00099999983

�0.0001 �0.00009999999

�0.00001 �0.00000999999

Now we consider approaching 0 from its right or through values greater than but close to 0.
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x f(x)

1 0.8414709848

0.5 0.4794255386

0.1 0.09983341664

0.01 0.00999983333

0.001 0.00099999983

0.0001 0.00009999999

0.00001 0.00000999999

As the values of x get closer and closer to 1, the values of f(x) get closer and closer to 0.
In symbols,

lim

x!0

sinx = 0.

.

We can also find lim

x!0

sinx by using the graph of the sine function. Consider the graph of
f(x) = sinx.

1

�1

⇡
2

⇡�⇡
2

�⇡ 3⇡
2

2⇡ 5⇡
2

3⇡

The graph validates our observation in Example 4 that lim

x!0

sinx = 0. Also, using the
graph, we have the following:

(a) lim

x!⇡

2

sinx = 1.

(b) lim

x!⇡
sinx = 0.

(c) lim

x!�⇡

2

sinx = �1.

(d) lim

x!�⇡
sinx = 0.

Teaching Tip

Ask the students what they have observed about the limit of the functions above
and their functional value at a point. Lead them to the fact that if f is either
exponential, logarithmic or trigonometric, and if c is a real number which is in the
domain of f , then

lim

x!c
f(x) = f(c).

This property is also shared by polynomials and rational functions, as discussed in
Topic 1.4.

44



(C) EXERCISES

I. Evaluate the following limits by constructing the table of values.

1. lim

x!1

3

x

2. lim

x!2

5

x

3. lim

x!4

log x

4. lim

x!0

cosx

5. lim

x!0

tanx

?6. lim

x!⇡
cosx Answer: -1

?7. lim

x!⇡
sinx Answer: 0

II. Given the graph below, evaluate the following limits:

x

y

1

y = bx

1. lim

x!0

bx 2. lim

x!1.2
bx 3. lim

x!�1

bx

III. Given the graph of the cosine function f(x) = cosx, evaluate the following limits:

⇡
2

⇡�⇡
2

�⇡ 3⇡
2

2⇡ 5⇡
2

3⇡

1

�1

1. lim

x!0

cosx 2. lim

x!⇡
cosx 3. lim

x!⇡

2

cosx
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TOPIC 2.2: Some Special Limits

DEVELOPMENT OF THE LESSON

(A) INTRODUCTION

We will determine the limits of three special functions; namely, f(t) =

sin t

t
, g(t) =

1� cos t

t
, and h(t) =

et � 1

t
. These functions will be vital to the computation of the

derivatives of the sine, cosine, and natural exponential functions in Chapter 2.

(B) LESSON PROPER

THREE SPECIAL FUNCTIONS

We start by evaluating the function f(t) =
sin t

t
.

EXAMPLE 1: Evaluate lim

t!0

sin t

t
.

Solution. We will construct the table of values for f(t) =

sin t

t
. We first approach the

number 0 from the left or through values less than but close to 0.

t f(t)

�1 0.84147099848

�0.5 0.9588510772

�0.1 0.9983341665

�0.01 0.9999833334

�0.001 0.9999998333

�0.0001 0.99999999983

Now we consider approaching 0 from the right or through values greater than but close to 0.

t f(t)

1 0.8414709848

0.5 0.9588510772

0.1 0.9983341665

0.01 0.9999833334

0.001 0.9999998333

0.0001 0.9999999983
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Since lim

t!0

�

sin t

t
and lim

t!0

+

sin t

t
are both equal to 1, we conclude that

lim

t!0

sin t

t
= 1.

.

The graph of f(t) =
sin t

t
below confirms that the y-values approach 1 as t approaches 0.

�8 �6 �4 �2 2 4 6 8

0.5

1

0

y =

sin t

t

Now, consider the function g(t) =
1� cos t

t
.

EXAMPLE 2: Evaluate lim

t!0

1� cos t

t
.

Solution. We will construct the table of values for g(t) =
1� cos t

t
. We first approach the

number 1 from the left or through the values less than but close to 0.

t g(t)

�1 �0.4596976941

�0.5 �0.2448348762

�0.1 �0.04995834722

�0.01 �0.0049999583

�0.001 �0.0004999999

�0.0001 �0.000005

Now we consider approaching 0 from the right or through values greater than but close to 0.

t g(t)

1 0.4596976941

0.5 0.2448348762

0.1 0.04995834722

0.01 0.0049999583

0.001 0.0004999999

0.0001 0.000005
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Since lim

t!0

�

1� cos t

t
= 0 and lim

t!0

+

1� cos t

t
= 0, we conclude that

lim

t!0

1� cos t

t
= 0.

.

Below is the graph of g(t) =
1� cos t

t
. We see that the y-values approach 0 as t tends to 0.

�8 �6 �4 �2 2 4 6 8

�0.5

0.5

1

0

y =

1� cos t

t

We now consider the special function h(t) =
et � 1

t
.

EXAMPLE 3: Evaluate lim

t!0

et � 1

t
.

Solution. We will construct the table of values for h(t) =

et � 1

t
. We first approach the

number 0 from the left or through the values less than but close to 0.

t h(t)

�1 0.6321205588

�0.5 0.7869386806

�0.1 0.9516258196

�0.01 0.9950166251

�0.001 0.9995001666

�0.0001 0.9999500016

Now we consider approaching 0 from the right or through values greater than but close to 0.

t h(t)

1 1.718281828

0.5 1.297442541

0.1 1.051709181

0.01 1.005016708

0.001 1.000500167

0.0001 1.000050002
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Since lim

x!0

�

et � 1

t
= 1 and lim

x!0

+

et � 1

t
= 1, we conclude that

lim

x!0

et � 1

t
= 1.

.

The graph of h(t) =
et � 1

t
below confirms that lim

t!0

h(t) = 1.

�8 �6 �4 �2 2

0.5

1

1.5

0

y =

et � 1

t

INDETERMINATE FORM “ 0
0

”

There are functions whose limits cannot be determined immediately using the Limit The-
orems we have so far. In these cases, the functions must be manipulated so that the limit,
if it exists, can be calculated. We call such limit expressions indeterminate forms.

In this lesson, we will define a particular indeterminate form, “ 0
0

”, and discuss how to
evaluate a limit which will initially result in this form.

Definition of Indeterminate Form of Type “ 0
0

”

If lim

x!c
f(x) = 0 and lim

x!c
g(x) = 0, then lim

x!c

f(x)

g(x)
is called an indeterminate form

of type “ 0
0

”.

Remark 1: A limit that is indeterminate of type “ 0
0

” may exist. To find the actual
value, one should find an expression equivalent to the original. This is commonly done by
factoring or by rationalizing. Hopefully, the expression that will emerge after factoring or
rationalizing will have a computable limit.

EXAMPLE 4: Evaluate lim

x!�1

x2 + 2x+ 1

x+ 1

.

Solution. The limit of both the numerator and the denominator as x approaches �1 is 0.
Thus, this limit as currently written is an indeterminate form of type

0

0

. However, observe
that (x+ 1) is a factor common to the numerator and the denominator, and

x2 + 2x+ 1

x+ 1

=

(x+ 1)

2

x+ 1

= x+ 1, when x 6= �1.
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Therefore,

lim

x!�1

x2 + 2x+ 1

x+ 1

= lim

x!�1

(x+ 1) = 0.

.

EXAMPLE 5: Evaluate lim

x!1

x2 � 1p
x� 1

.

Solution. Since lim

x!1

x2 � 1 = 0 and lim

x!1

p
x� 1 = 0, then lim

x!1

x2 � 1p
x� 1

is an indeterminate

form of type “ 0
0

”. To find the limit, observe that if x 6= 1, then

x2 � 1p
x� 1

·
p
x+ 1p
x+ 1

=

(x� 1)(x+ 1)(

p
x+ 1)

x� 1

= (x+ 1)(

p
x+ 1).

So, we have

lim

x!1

x2 � 1p
x+ 1

= lim

x!1

(x+ 1)(

p
x+ 1) = 4.

.

Teaching Tip

In solutions of evaluating limits, it is a common mistake among students to forget
to write the “ lim" operator. They will write

lim

x!1

x2 � 1p
x+ 1

= (x+ 1)(

p
x+ 1) = 4,

instead of always writing the limit operator until such time that they are already
substituting the value x = 1. Of course, mathematically, the equation above does
not make sense since (x + 1)(

p
x + 1) is not always equal to 4. Please stress the

importance of the “ lim" operator.

Remark 2: We note here that the three limits discussed in Part 1 of this section,

lim

t!0

sin t

t
, lim

t!0

1� cos t

t
, and lim

x!0

et � 1

t
,

will result in “ 0
0

” upon direct substitution. However, they are not resolved by factoring or
rationalization, but by a method which you will learn in college calculus.

(C) EXERCISES

I. Evaluate the following limits by constructing their respective tables of values.
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1. lim

t!0

t

sin t

2. lim

t!0

t

et � 1

3. lim

t!0

sin(2t)

2t

4. lim

t!0

1� cos(3t)

3t

?5. lim

t!0

sin t

t
· 1� cos t

t
Answer: 0

?6. lim

t!0

1� cos t

sin t
Answer: 0

II. Evaluate the following limits:

1. lim

w!1

(1 +

3
p
w)(2� w2

+ 3w3

)

2. lim

t!�1

t2 � 1

t2 + 4t+ 3

3. lim

z!2

✓
2z � z2

z2 � 4

◆
3

4. lim

x!�1

x2 � x� 2

x3 � 6x2 � 7x

5. lim

y!�2

4� 3y2 � y3

6� y � 2y2

6. lim

x!4

x3 � 7x2 + 14x� 8

x2 � 3x� 4

7. lim

x!�1

p
x2 + 3� 2

x2 � 1

8. lim

x!2

p
2x�

p
6� x

4� x2

?9. lim

x!16

x2 � 256

4�
p
x

Answer: �256

?10. lim

q!�1

p
9q2 � 4�

p
17 + 12q

q2 + 3q + 2

Answer: �3

p
5
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LESSON 3: Continuity of Functions

TIME FRAME: 3-4 hours

LEARNING OUTCOMES: At the end of the lesson, the learner shall be able to:

1. Illustrate continuity of a function at a point;
2. Determine whether a function is continuous at a point or not;
3. Illustrate continuity of a function on an interval; and
4. Determine whether a function is continuous on an interval or not.

LESSON OUTLINE:

1. Continuity at a point
2. Determining whether a function is continuous or not at a point
3. Continuity on an interval
4. Determining whether a function is continuous or not on an interval
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TOPIC 3.1: Continuity at a Point

DEVELOPMENT OF THE LESSON

(A) INTRODUCTION

As we have observed in our discussion of limits in Topic (1.2), there are functions whose
limits are not equal to the function value at x = c, meaning, lim

x!c
f(x) 6= f(c).

lim

x!c
f(x) is NOT NECESSARILY the same as f(c).

This leads us to the study of continuity of functions. In this section, we will be focusing
on the continuity of a function at a specific point.

Teaching Tip

Ask the students to describe, in their own words, the term continuous. Ask them
how the graph of a continuous function should look. Lead them towards the con-
clusion that a graph describes a continuous function if they can draw the entire
graph without lifting their pen, or pencil, from their sheet of paper.

(B) LESSON PROPER
LIMITS AND CONTINUITY AT A POINT

What does “continuity at a point” mean? Intuitively, this means that in drawing the graph
of a function, the point in question will be traversed. We start by graphically illustrating
what it means to be continuity at a point.

EXAMPLE 1: Consider the graph below.

1 2 3

�1

1

2

3

4

0

f(x) = 3x� 1
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Is the function continuous at x = 1?

Solution. To check if the function is continuous at x = 1, use the given graph. Note that
one is able to trace the graph from the left side of the number x = 1 going to the right
side of x = 1, without lifting one’s pen. This is the case here. Hence, we can say that the
function is continuous at x = 1. .

EXAMPLE 2: Consider the graph of the function g(x) below.

1 2 3

�1

1

2

3

4

0

g(x) =
3x2 � 4x+ 1

x� 1

Is the function continuous at x = 1?

Solution. We follow the process in the previous example. Tracing the graph from the left of
x = 1 going to right of x = 1, one finds that s/he must lift her/his pen briefly upon reaching
x = 1, creating a hole in the graph. Thus, the function is discontinuous at x = 1. .

EXAMPLE 3: Consider the graph of the function h(x) =
1

x
.

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

0

h(x) =
1
x

Is the function continuous at x = 0?
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Solution. If we trace the graph from the left of x = 0 going to right of x = 0, we have to
lift our pen since at the left of x = 0, the function values will go downward indefinitely,
while at the right of x = 0, the function values will go to upward indefinitely. In other
words,

lim

x!0

�

1

x
= �1 and lim

x!0

+

1

x
= 1

Thus, the function is discontinuous at x = 0. .

EXAMPLE 4: Consider again the graph of the function h(x) =

1

x
. Is the function

continuous at x = 2?

Solution. If we trace the graph of the function h(x) =
1

x
from the left of x = 2 to the right

of x = 2, you will not lift your pen. Therefore, the function h is continuous at x = 2. .

Suppose we are not given the graph of a function but just the function itself. How do we
determine if the function is continuous at a given number? In this case, we have to check
three conditions.

Three Conditions of Continuity
A function f(x) is said to be continuous at x = c if the following three conditions
are satisfied:

(i) f(c) exists;

(ii) lim

x!c
f(x) exists; and

(iii) f(c) = lim

x!c
f(x).

If at least one of these conditions is not met, f is said to be discontinuous at x = c.

EXAMPLE 5: Determine if f(x) = x3 + x2 � 2 is continuous or not at x = 1.

Solution. We have to check the three conditions for continuity of a function.

(a) If x = 1, then f(1) = 0.

(b) lim

x!1

f(x) = lim

x!1

(x3 + x2 � 2) = 1

3

+ 1

2 � 2 = 0.

(c) f(1) = 0 = lim

x!1

f(x).

Therefore, f is continuous at x = 1. .
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EXAMPLE 6: Determine if f(x) =
x2 � x� 2

x� 2

is continuous or not at x = 0.

Solution. We have to check the three conditions for continuity of a function.

(a) If x = 0, then f(0) = 1.

(b) lim

x!0

f(x) = lim

x!0

x2 � x� 2

x� 2

= lim

x!0

(x� 2)(x+ 1)

x� 2

= lim

x!0

(x+ 1) = 1.

(c) f(0) = 1 = lim

x!0

f(x).

Therefore, f is continuous at x = 0. .

EXAMPLE 7: Determine if f(x) =
x2 � x� 2

x� 2

is continuous or not at x = 2.

Solution. Note that f is not defined at x = 2 since 2 is not in the domain of f . Hence,
the first condition in the definition of a continuous function is not satisfied. Therefore, f
is discontinuous at x = 2. .

EXAMPLE 8: Determine if

f(x) =

8
<

:
x+ 1 if x < 4,

(x� 4)

2

+ 3 if x � 4

is continuous or not at x = 4. (This example was given in Topic 1.1.)

Solution. Note that f is defined at x = 4 since f(4) = 3. However, lim

x!4

�
f(x) = 5 while

lim

x!4

+
f(x) = 3. Therefore lim

x!4

�
f(x) DNE, and f is discontinuous at x = 4. .

Teaching Tip

The following seatwork is suggested at this point: Determine if f(x) =
p
x� 1 is

continuous or not at x = 4.

Solution. We check the three conditions:

(a) f(4) =
p
4� 1 =

p
3 > 0

(b) lim

x!4

p
x� 1 =

p
4� 1 =

p
3

(c) f(4) =
p
3 = lim

x!4

p
x� 1

Therefore, the function f is continuous at x = 4. .
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(C) EXERCISES

I. Given the graph below, determine if the function H(x) is continuous at the following
values of x:

1. x = 2

2. x = �3

3. x = 0

�3 �2 �1 1 2 3

�1

1

0

Heaviside function H(x)

II. Determine if the following functions are continuous at the given value of x.

1. f(x) = 3x2 + 2x+ 1 at x = �2

2. f(x) = 9x2 � 1 at x = 1

3. f(x) =
1

x� 2

at x = 2

4. h(x) =
x� 1

x2 � 1

at x = 1

5. h(x) =
x+ 1

x2 � 1

at x = 1

6. g(x) =
p
x� 3 at x = 4

7. g(x) =
xp
4� x

at x = 8

8. g(x) =

p
4� x

x
at x = 0
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TOPIC 3.2: Continuity on an Interval

DEVELOPMENT OF THE LESSON

(A) INTRODUCTION

A function can be continuous on an interval. This simply means that it is continuous at
every point on the interval. Equivalently, if we are able to draw the entire graph of the
function on an interval without lifting our tracing pen, or without being interrupted by a
hole in the middle of the graph, then we can conclude that the the function is continuous
on that interval.

We begin our discussion with two concepts which are important in determining whether a
function is continuous at the endpoints of closed intervals.

One-Sided Continuity

(a) A function f is said to be continuous from the left at x = c if

f(c) = lim

x!c�
f(x).

(b) A function f is said to be continuous from the right at x = c if

f(c) = lim

x!c+
f(x).

Here are known facts on continuities of functions on intervals:

Continuity of Polynomial, Absolute Value, Rational and Square Root Functions

(a) Polynomial functions are continuous everywhere.

(b) The absolute value function f(x) = |x| is continuous everywhere.

(c) Rational functions are continuous on their respective domains.

(d) The square root function f(x) =
p
x is continuous on [0,1).
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(B) LESSON PROPER
LIMITS AND CONTINUITY ON AN INTERVAL

We first look at graphs of functions to illustrate continuity on an interval.

EXAMPLE 1: Consider the graph of the function f given below.

�2 �1 1 2

�2

�1

1

2

0

Using the given graph, determine if the function f is continuous on the following intervals:

(a) (�1, 1) (b) (�1, 0) (c) (0,+1)

Solution. Remember that when we say “trace from the right side of x = c”, we are tracing
not from x = c on the x-axis, but from the point (c, f(c)) along the graph.

(a) We can trace the graph from the right side of x = �1 to the left side of x = 1 without
lifting the pen we are using. Hence, we can say that the function f is continuous on
the interval (�1, 1).

(b) If we trace the graph from any negatively large number up to the left side of 0, we
will not lift our pen and so, f is continuous on (�1, 0).

(c) For the interval (0,+1), we trace the graph from the right side of 0 to any large
number, and find that we will not lift our pen. Thus, the function f is continuous on
(0,+1).

.
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Teaching Tip

Please point these out after solving the previous example:
(a) The function is actually continuous on [�1, 1], [0,+1) and (�1, 0] since the

function f is defined at the endpoints of the intervals: x = �1, x = 1, and
x = 0, and we are still able to trace the graph on these intervals without lifting
our tracing pen.

(b) The function f is therefore continuous on the interval (�1,+1) since if we
trace the entire graph from left to right, we won’t be lifting our pen. This is
an example of a function which is continuous everywhere.

EXAMPLE 2: Consider the graph of the function h below.

�2 �1 1 2

�2

�1

1

2

0

Determine using the given graph if the function f is continuous on the following intervals:

a. (�1, 1) b. [0.5, 2]

Solution. Because we are already given the graph of h, we characterize the continuity of h
by the possibility of tracing the graph without lifting the pen.

(a) If we trace the graph of the function h from the right side of x = �1 to the left side
of x = 1, we will be interrupted by a hole when we reach x = 0. We are forced to
lift our pen just before we reach x = 0 to indicate that h is not defined at x = 0 and
continue tracing again starting from the right of x = 0. Therefore, we are not able to
trace the graph of h on (�1, 1) without lifting our pen. Thus, the function h is not
continuous on (�1, 1).

(b) For the interval [0.5, 2], if we trace the graph from x = 0.5 to x = 2, we do not have
to lift the pen at all. Thus, the function h is continuous on [0.5, 2].
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.

Now, if a function is given without its corresponding graph, we must find other means to
determine if the function is continuous or not on an interval. Here are definitions that will
help us:

A function f is said to be continuous...

(a) everywhere if f is continuous at every real number. In this case, we also say f

is continuous on R.

(b) on (a, b) if f is continuous at every point x in (a, b).

(c) on [a, b) if f is continuous on (a, b) and from the right at a.

(d) on (a, b] if f is continuous on (a, b) and from the left at b.

(e) on [a, b] if f is continuous on (a, b] and on [a, b).

(f) on (a,1) if f is continuous at all x > a.

(g) on [a,1) if f is continuous on (a,1) and from the right at a.

(h) on (�1, b) if f is continuous at all x < b.

(i) on (�1, b] if f is continuous on (�1, b) and from the left at b.

EXAMPLE 3: Determine the largest interval over which the function f(x) =
p
x+ 2 is

continuous.

Solution. Observe that the function f(x) =
p
x+ 2 has function values only if x+ 2 � 0,

that is, if x 2 [�2,+1). For all c 2 (�2,+1),

f(c) =
p
c+ 2 = lim

x!c

p
x+ 2.

Moreover, f is continuous from the right at �2 because

f(�2) = 0 = lim

x!�2

+

p
x+ 2.

Therefore, for all x 2 [�2,+1), the function f(x) =
p
x+ 2 is continuous. .
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EXAMPLE 4: Determine the largest interval over which h(x) =
x

x2 � 1

is continuous.

Solution. Observe that the given rational function h(x) =
x

x2 � 1

is not defined at x = 1

and x = �1. Hence, the domain of h is the set R \ {�1, 1}. As mentioned at the start
of this topic, a rational function is continuous on its domain. Hence, h is continuous over
R \ {�1, 1}. .

EXAMPLE 5: Consider the function g(x) =

8
>>>><

>>>>:

x if x  0,

3 if 0 < x  1,

3� x2 if 1 < x  4,

x� 3 if x > 4.
Is g continuous on (0, 1]? on (4,1)?

Solution. Since g is a piecewise function, we just look at the ‘piece’ of the function corre-
sponding to the interval specified.

(a) On the interval (0, 1], g(x) takes the constant value 3. Also, for all c 2 (0, 1],

lim

x!c
g(x) = 3 = g(c).

Thus, g is continuous on (0, 1].

(b) For all x > 4, the corresponding ‘piece’ of g is g(x) = x � 3, a polynomial function.
Recall that a polynomial function is continuous everywhere in R. Hence, f(x) = x�3

is surely continuous for all x 2 (4,+1).

.

(C) EXERCISES

1. Is the function g(x) =

8
>>>><

>>>>:

x if x  0,

3 if 0 < x  1,

3� x2 if 1 < x  4,

x� 3 if x > 4,

continuous on [1, 4]? on (�1, 0)?

?2. Do as indicated.

a. Find all values of m such that g(x) =

(
x+ 1 if x  m,

x2 if x > m,
is continuous everywhere.
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b. Find all values of a and b that make

h(x) =

8
>><

>>:

x+ 2a if x < �2,

3ax+ b if � 2  x  1,

3x� 2b if x > 1,

continuous everywhere.
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LESSON 4: More on Continuity

TIME FRAME: 4 hours

LEARNING OUTCOMES: At the end of the lesson, the learner shall be able to:

1. Illustrate different types of discontinuity (hole/removable, jump/essential, asymptotic/infinite);
2. Illustrate the Intermediate Value and Extreme Value Theorems; and
3. Solve problems involving the continuity of a function.

LESSON OUTLINE:

1. Review of continuity at a point
2. Illustration of a hole/removable discontinuity at a point
3. Illustration of a jump essential discontinuity at a point
4. Illustration of an infinite essential discontinuity at a point
5. Illustration of a consequence of continuity given by the Intermediate Value Theorem
6. Illustration of a consequence of continuity given by the Extreme Value Theorem
7. Situations which involve principles of continuity
8. Solutions to problems involving properties/consequences of continuity
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TOPIC 4.1: Different Types of Discontinuities

DEVELOPMENT OF THE LESSON

(A) INTRODUCTION

In Topic (1.2), it was emphasized that the value of lim

x!c
f(x) may be distinct from the

value of the function itself at x = c. Recall that a limit may be evaluated at values which
are not in the domain of f(x).

In Topics (3.1) - (3.2), we learned that when lim

x!c
f(x) and f(c) are equal, f(x) is said

to be continuous at c. Otherwise, it is said to be discontinuous at c. We will revisit the
instances when lim

x!c
f(x) and f(c) have unequal or different values. These instances of

inequality and, therefore, discontinuity are very interesting to study. This section focuses
on these instances.

(B) LESSON PROPER

Consider the functions g(x), h(x) and j(x) where

g(x) =

8
><

>:

3x2 � 4x+ 1

x� 1

if x 6= 1,

1 if x = 1.

h(x) =

8
<

:
x+ 1 if x < 4,

(x� 4)

2

+ 3 if x � 4.

and

j(x) =
1

x
, x 6= 0.

We examine these for continuity at the respective values 1, 4, and 0.

(a) lim

x!1

g(x) = 2 but g(1) = 1.

(b) lim

x!4

h(x) DNE but h(4) = 3.

(c) lim

x!0

j(x) DNE and f(0) DNE.
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All of the functions are discontinuous at the given values. A closer study shows that they
actually exhibit different types of discontinuity.

REMOVABLE DISCONTINUITY

A function f(x) is said to have a removable discontinuity at x = c if

(a) lim

x!c
f(x) exists; and

(b) either f(c) does not exist or f(c) 6= lim

x!c
f(x).

It is said to be removable because the discontinuity may be removed by redefining f(c) so
that it will equal lim

x!c
f(x). In other words, if lim

x!c
f(x) = L, a removable discontinuity is

remedied by the redefinition:

Let f(c) = L.

Recall g(x) above and how it is discontinuous at 1. In this case, g(1) exists. Its graph is as
follows:

1 2 3

�1

1

2

3

4

0

y = g(x)

The discontinuity of g at the point x = 1 is manifested by the hole in the graph of y = g(x) at
the point (1, 2). This is due to the fact that f(1) is equal to 1 and not 2, while lim

x!1

g(x) = 2.
We now demonstrate how this kind of a discontinuiy may be removed:

Let g(1) = 2.

This is called a redefinition of g at x = 1. The redefinition results in a “transfer” of the
point (1, 1) to the hole at (1, 2). In effect, the hole is filled and the discontinuity is removed!
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This is why the discontinuity is called a removable one. This is also why, sometimes, it is
called a hole discontinuity.

We go back to the graph of g(x) and see how redefining f(1) to be 2 removes the disconti-
nuity:

1 2 3

�1

1

2

3

4

0

y = g(x)

redefined

and revises the function to its continuous counterpart,

G(x) =

8
<

:
g(x) if x 6= 1,

2 if x = 1.

ESSENTIAL DISCONTINUITY

A function f(x) is said to have an essential discontinuity at x = c if lim

x!c
f(x) DNE.

Case 1. If for a function f(x), lim
x!c

f(x) DNE because the limits from the left and right of
x = c both exist but are not equal, that is,

lim

x!c�
f(x) = L and lim

x!c+
f(x) = M, where L 6= M,

then f is said to have a jump essential discontinuity at x = c.
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Recall the function h(x) where

h(x) =

8
<

:
x+ 1 if x < 4,

(x� 4)

2

+ 3 if x � 4.

Its graph is as follows:

x

y

(4, 5)

(4, 3)

y = h(x)

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

From Lesson 2, we know that lim

x!4

h(x) DNE because

lim

x!4

�
h(x) = 5 and lim

x!4

+
h(x) = 3.

The graph confirms that the discontinuity of h(x) at x = 4 is certainly not removable.
See, the discontinuity is not just a matter of having one point missing from the graph and
putting it in; if ever, it is a matter of having a part of the graph entirely out of place. If we
force to remove this kind of discontinuity, we need to connect the two parts by a vertical
line from (4, 5) to (4, 3). However, the resulting graph will fail the Vertical Line Test and
will not be a graph of a function anymore. Hence, this case has no remedy. From the
graph, it is clear why this essential discontinuity is also called a jump discontinuity.

Case 2. If a function f(x) is such that lim

x!c
f(x) DNE because either
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(i) lim

x!c�
f(x) = +1, or

(ii) lim

x!c�
f(x) = �1, or

(iii) lim

x!c+
f(x) = +1, or

(iv) lim

x!c+
f(x) = �1,

then f(x) is said to have an infinite discontinuity at x = c.

Recall j(x) =
1

x
, x 6= 0, as mentioned earlier. Its graph is as follows:

x

y

j(x) =
1

x

1 2 3 4 5

1

2

3

4

5

-1-2-3-4-5

-1

-2

-3

-4

-5

We have seen from Topic 1.4 that

lim

x!0

�

1

x
= �1 and lim

x!0

+

1

x
= +1.

Because the limits are infinite, the limits from both the left and the right of x = 0 do
not exist, and the discontinuity cannot be removed. Also, the absence of a left-hand
(or right-hand) limit from which to “jump” to the other part of the graph means the
discontinuity is permanent. As the graph indicates, the two ends of the function that
approach x = 0 continuously move away from each other: one end goes upward without
bound, the other end goes downward without bound. This translates to an asymptotic
behavior as x-values approach 0; in fact, we say that x = 0 is a vertical asymptote of f(x).
Thus, this discontinuity is called an infinite essential discontinuity.
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FLOWCHART. Here is a flowchart which can help evaluate whether a function is contin-
uous or not at a point c. Before using this, make sure that the function is defined on an
open interval containing c, except possibly at c.

Does lim

x!c

f(x) exist?

Is lim

x!c

f(x) = f(c)? Do the one-sided limits

exist but are unequal?

f is continuous at c. f has a removable

discontinuity at c.

f has an infinite

essential discontinuity.

f has a jump

essential discontinuity.

Yes

Yes No

No

No Yes

(C) EXERCISES

1. Consider the function f(x) whose graph is given below.

x

y

y = f(x)

0

�1�2�3�4�5

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Enumerate all discontinuities of f(x) and identify their types. If a discontinuity is
removable, state the redefiniton that will remove it. Hint: There are 6 discontinuities.
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2. For each specified discontinuity, sketch the
graph of a possible function f(x) that illustrates
the discontinuity. For example, if it has a jump
discontinuity at x = �2, then a possible graph
of f is

x

y

y = f(x)

1

2

3

4

5

�1�2�3�4

Do a similar rendition for f for each of the following discontinuities:

a. lim

x!0

f(x) = 1 and f(0) = �3

b. lim

x!1

f(x) = �1 and f(1) DNE

c. lim

x!2

�
f(x) = �2 and lim

x!2

+
f(x) = 2

d. lim

x!3

�
f(x) = �1 and lim

x!3

+
f(x) = +1

e. lim

x!�1

�
f(x) = +1, lim

x!�1

+
f(x) = 0 and f(�1) = 0

f. lim

x!�1

�
f(x) = +1, lim

x!�1

+
f(x) = 0 and f(�1) = �1

g. There is a removable discontinuity at x = 1 and f(1) = 4

h. There is a jump discontinuity at x = 2 and f(2) = 3

i. There is an infinite discontinuity at x = 0

j. There is an infinite discontinuity at x = 0 and f(0) = �2

3. Consider the function f(x) whose graph is given below.

x

y

0 1 2 3 4 5 6

1

2

3

4

5

6
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a. What kind of discontinuity is exhibited by the graph?

b. At what values of x does this type of discontinuity happen?

c. Can the discontinuities be removed? Why/Why not?

d. How many discontinuities do you see in the graph?

e. Based on the graph above, and assuming it is part of f(x) = [[x]], how many discon-
tinuities will the graph of f(x) = [[x]] have?

f. Assuming this is part of the graph of f(x) = [[x]], how would the discontinuities
change if instead you have f(x) = [[2x]] or f(x) = [[3x]] or f(x) = [[0.5x]]?

4. For each function whose graph is given below, identify the type(s) of discontinuity(ies)
exhibited. Remedy any removable discontinuity with an appropriate redefinition.

a. y = f(x)

�3 �2 �1 1 2 3

1

2

3

4

x

y

b. y = g(x)

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

x

y

72



c. y = h(x)

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

x

y

d. y = j(x)

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

x

y

5. Determine the possible points of discontinuity of the following functions and the type of
discontinuity exhibited at that point. Remove any removable discontinuity. Sketch the
graph of f(x) to verify your answers.

a. f(x) =
1

x2

b. f(x) =
x2 � 4

x� 2

c. f(x) =

8
><

>:

x2 � 4

x� 2

if x 6= 2,

�4 if x = 2.

d. f(x) =

8
><

>:

x2 � 4

x� 2

if x < 2,

�4 if x � 2.

e. f(x) =
x� 2

x2 � 4

f. f(x) =
1

x2 � 9
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g. f(x) = tanx

h. f(x) = cosx, x 6= 2k⇡, where k is an
integer.

i. f(x) = cscx

?j. f(x) =
1

[[x]]

Answer to the starred exercise: First of all, f(x) will be discontinuous at values
where the denominator will equal 0. This means that x cannot take values in the interval
[0, 1). This will cause a big jump (or essential) discontinuity from where the graph stops
right before (-1,-1) to where it resumes at (1,1).
Moreover, there will again be jump discontinuities at the integer values of x.

x

y

0 1 2 3 4

1

2

�1�2�3�4

�1

�2
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TOPIC 4.2: The Intermediate Value and the Extreme Value The-
orems

DEVELOPMENT OF THE LESSON

(A) INTRODUCTION

After discussing continuity at length, we will now learn two important consequences brought
about by the continuity of a function over a closed interval. The first one is called the
Intermediate Value Theorem or the IVT. The second one is called the Extreme Value
Theorem or the EVT.

(B) LESSON PROPER

The Intermediate Value Theorem

The first theorem we will illustrate says that a function f(x) which is found to be continuous
over a closed interval [a, b] will take any value between f(a) and f(b).

Theorem 4 (Intermediate Value Theorem (IVT)). If a function f(x) is continuous over a
closed interval [a, b], then for every value m between f(a) and f(b), there is a value c 2 [a, b]

such that f(c) = m.

x

y

P

y = f(x)

a bc

f(a)

f(b)

m
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Look at the graph as we consider values of m between f(a) and f(b). Imagine moving the
dotted line for m up and down between the dotted lines for f(a) and f(b). Correspond-
ingly, the dot P will move along the thickened curve between the two points, (a, f(a)) and
(b, f(b)).
We make the following observations:

• As the dark dot moves, so will the vertical dotted line over x = c move.

• In particular, the said line moves between the vertical dotted lines over x = a and
x = b.

• More in particular, for any value that we assign m in between f(a) and f(b), the
consequent position of the dark dot assigns a corresponding value of c between a and
b. This illustrates what the IVT says.

EXAMPLE 1: Consider the function f(x) = 2x� 5.

Since it is a linear function, we know it is
continuous everywhere. Therefore, we can
be sure that it will be continuous over any
closed interval of our choice.

Take the interval [1, 5]. The IVT says
that for any m intermediate to, or in
between, f(1) and f(5), we can find a
value intermediate to, or in between, 1 and
5.

Start with the fact that f(1) = �3 and
f(5) = 5. Then, choose an m 2 [�3, 5], to
exhibit a corresponding c 2 [1, 5] such that
f(c) = m.

x

y

1 54

11

4

�3

5

0

3

1

2

y = 2x� 5

Choose m =

1

2

. By IVT, there is a c 2 [1, 5] such that f(c) =
1

2

. Therefore,

1

2

= f(c) = 2c� 5 =) 2c =
11

2

=) c =
11

4

.

Indeed,
11

4

2 (1, 5).
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We can try another m-value in (�3, 5). Choose m = 3. By IVT, there is a c 2 [1, 5] such
that f(c) = 3. Therefore,

3 = f(c) = 2c� 5 =) 2c = 8 =) c = 4.

Again, the answer, 4, is in [1, 5]. The claim of IVT is clearly seen in the graph of y = 2x�5.

EXAMPLE 2: Consider the simplest quadratic function
f(x) = x2.

Being a polynomial function, it is continuous everywhere.
Thus, it is also continuous over any closed interval we
may specify.

We choose the interval [�4, 2]. For any m in between
f(�4) = 16 and f(2) = 4, there is a value c inside the
interval [�4, 2] such that f(c) = m.

Suppose we choose m = 9 2 [4, 16]. By IVT, there exists
a number c 2 [�4, 2] such that f(c) = 9. Hence,

9 = f(c) = c2 =) c = ±3.

However, we only choose c = �3 because the other
solution c = 3 is not in the specified interval [�4, 2].

Note: In the previous example, if the interval that was
specified was [0,4], then the final answer would instead be
c = +3.

x

y

y = x2

m = 9

�4�3

2

16

Remark 1: The value of c 2 [a, b] in the conclusion of the Intermediate Value Theorem is
not necessarily unique.
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EXAMPLE 3: Consider the polyno-
mial function

f(x) = x3 � 4x2 + x+ 7

over the interval [�1.5, 4] Note that

f(�1.5) = �6.875 and f(4) = 11.

We choose m = 1. By IVT, there ex-
ists c 2 [�1.5, 4] such that f(c) = 1.

Thus,

f(c) = c3 � 4c2 + c+ 7 = 1

=) c3 � 4c2 + c+ 6 = 0

=) (c+ 1)(c� 2)(c� 3) = 0

=) c = �1 or c = 2 or c = 3.

We see that there are three values of
c 2 [�1.5, 4] which satisfy the conclu-
sion of the Intermediate Value Theo-
rem.

�3 �2 �1 1 2 3 4 5

�6.875

1

7

11

0

y = 1

y = x3 � 4x2 + x+ 7

The Extreme Value Theorem

The second theorem we will illustrate says that a function f(x) which is found to be con-
tinuous over a closed interval [a, b] is guaranteed to have extreme values in that interval.

An extreme value of f , or extremum, is either a minimum or a maximum value of the
function.

• A minimum value of f occurs at some x = c if f(c)  f(x) for all x 6= c in the interval.

• A maximum value of f occurs at some x = c if f(c) � f(x) for all x 6= c in the interval.

Theorem 5 (Extreme Value Theorem (EVT)). If a function f(x) is continuous over a
closed interval [a, b], then f(x) is guaranteed to reach a maximum and a minimum on [a, b].

Note: In this section, we limit our illustration of extrema to graphical examples. More
detailed and computational examples will follow once derivatives have been discussed.
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EXAMPLE 4: Consider the function
f(x) = �2x4 + 4x2 over [�1, 1].

From the graph, it is clear that on the interval,
f has

• The maximum value of 2, occurring at x =

±1; and

• The minimum value of 0, occurring at x =

0.

�1 1 2

�1

0

1

2

3

x

y

y = �2x4 + 4x2

Remark 2: Similar to the IVT, the value c 2 [a, b] at which a minimum or a maximum
occurs is not necessarily unique.

Here are more examples exhibiting the guaranteed existence of extrema of functions con-
tinuous over a closed interval.

EXAMPLE 5: Consider Example 1. Observe that f(x) = 2x � 5 on [1, 5] exhibits the
extrema at the endpoints:

• The minimum occurs at x = 1, giving the minimum value f(1) = �3; and

• The maximum occurs at x = 5, giving the maximum value f(5) = 5.

EXAMPLE 6: Consider Example 2. f(x) = x2 on [�4, 2] exhibits an extremum at one
endpoint and another at a point inside the interval (or, an interior point):

• The minimum occurs at x = 0, giving the minimum value f(0) = 0; and

• The maximum occurs at x = �4, giving the maximum value f(�4) = 16.
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EXAMPLE 7: Consider f(x) = 2x4 � 8x2.

• On the interval [�2,�
p
2], the extrema oc-

cur at the endpoints.

– Endpoint x = �2 yields the maximum
value f(�2) = 0.

– Endpoint x = �
p
2 yields the mini-

mum value f(�
p
2) = � 8.

• On the interval [�2,�1], one extremum oc-
curs at an endpoint, another at an interior
point.

– Endpoint x = �2 yields the maximum
value f(�2) = 0.

– Interior point x = �
p
2 yields the

minimum value f(�
p
2) = � 8.

x

y

y = 2x4 � 8x2

�2

2

(�
p
2,�8) (

p
2, 8)

• On the interval [�1.5, 1], the extrema occur at interior points.

– Interior point x = �
p
2 yields the minimum value f(�

p
2) = �8.

– Interior point x = 0 yields the maximum value f(0) = 0.

• On the interval [�2, 2], the extrema occur at both the endpoints and several interior
points.

– Endpoints x = ±2 and interior point x = 0 yield the maximum value 0.

– Interior points x = ±
p
2 yield the minimum value �8.

Remark 3: Keep in mind that the IVT and the EVT are existence theorems (“there is a
value c ...”), and their statements do not give a method for finding the values stated in their
respective conclusions. It may be difficult or impossible to find these values algebraically
especially if the function is complicated.
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(C) EXERCISES

1. What value(s) of c, if any, will satisfy the IVT for the given function f and the given
value m, on the given interval [a, b]. If there is (are) none, provide an explanation.

a. f(x) = x2 � 1, m = 2, [�1, 2]

b. f(x) = x2 � 1, m = 2, [�1, 1]

c. f(x) = x3 + 2, m = 3, [0, 3]

d. f(x) = sinx, m = 1/2, [�⇡,⇡]

e. f(x) = x3�3x2+3x�1, m = �1, [�1, 2]

f. f(x) = 4, m = 4, [�2, 2]

g. f(x) = x, m = 4, [�2, 2]

h. f(x) = x2, m = 4, [�2, 2]

2. Sketch the graph of each f(x) in Item (a) to verify your answers.

3. Referring to your graphs in Item (b), where does each f(x) attain its minimum and
maximum values? Compute for the respective minimum and maximum values.

4. Determine whether the given function will have extrema (both a maximum and a mini-
mum) on the interval indicated. If not, provide an explanation.

a. f(x) = x2 � 1, (�1, 2)

b. f(x) = |x| , [0, 1]
c. f(x) = |x| , (0, 1)
d. f(x) = sinx, (�⇡,⇡)

e. f(x) = sinx, [�⇡/2,⇡/2]

f. f(x) = x3 � 3x2 + 3x� 1, (�1, 1)

g. f(x) = 1/x, [�2, 2]

h. f(x) = [[x]], [0, 1]

?5. The next items will show that the hypothesis of the Intermediate Value Theorem – that
f must be continuous on a closed and bounded interval – is indispensable.

a. Find an example of a function f defined on [0, 1] such that f(0) 6= f(1) and there
exists no c 2 [0, 1] such that

f(c) =
f(0) + f(1)

2

.

(Hint: the function must be discontinuous on [0, 1].)
Possible answer: Piecewise function defined by f(x) = 1 on [0, 1) and f(1) = 0.

b. Find an example of a function f defined on [0, 1] but is only continuous on (0, 1) and
such that there exists no value of c 2 [0, 1] such that

f(c) =
f(0) + f(1)

2

Possible answer: Piecewise function defined by f(x) = 1 on [0, 1) and f(1) = 0.
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?6. The next items will show that the hypothesis of the Extreme Value Theorem – that f

must be continuous on a closed and bounded interval – is indispensable.

a. Find an example of a function f defined on [0, 1] such that f does not attain its
absolute extrema on [0, 1]. (Hint: the function must be discontinuous on [0, 1].)
Possible answer: Piecewise function defined by f(x) = x on (0, 1) and f(0) =

f(1) =
1

2

.

b. Find an example of a function f that is continuous on (0, 1) but does not attain its
absolute extrema on [0, 1]

Possible answer: Piecewise function defined by f(x) = x on (0, 1) and f(0) =

f(1) =
1

2

.

7. Determine whether the statement is true or false. If you claim that it is false, provide a
counterexample.

a. If a function is continuous on a closed interval [a, b], then it has a maximum and a
minimum on that interval. Answer: True

b. If a function is discontinuous on a closed interval, then it has no extreme value on
that interval. Answer: False, for example the piecewise function f(x) = 0 on [0, 1/2]

and f(x) = 1 on (1/2, 1] achieve its extrema but it is discontinuous on [0, 1].

c. If a function has a maximum and a minimum over a closed interval, then it is con-
tinuous on that interval. Answer: False, same counterexample as
above

d. If a function has no extreme values on [a, b], then it is discontinuous on that interval.
Answer: True

e. If a function has either a maximum only or a minimum only over a closed interval,
then it is discontinuous on that interval. Answer: True

8. Determine whether the given function will have extrema (both a maximum and a mini-
mum) on the interval indicated. If not, provide an explanation.

a. f(x) = |x+ 1| , [�2, 3]

b. f(x) = � |x+ 1|+ 3, (�2, 2)

c. f(x) = [[x]], [1, 2)

d. f(x) = [[x]], [1, 2]

e. f(x) = cosx, [0, 2⇡]

f. f(x) = cosx, [0, 2⇡)

g. f(x) = x4 � 2x2 + 1, [�1, 1]

h. f(x) = x4 � 2x2 + 1, (�3/2, 3/2)

?9. Sketch a graph each of a random f over the interval [�3, 3] showing, respectively,

a. f with more than 2 values c in the interval satisfying the IVT for m = 1/2.

b. f with only one value c in the interval satisfying the IVT for m = �1.

c. f with exactly three values c in the interval satisfying m = 0.

d. f with a unique maximum at x = �3 and a unique minimum at x = 3.

e. f with a unique minimum and a unique maximum at interior points of the interval.
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f. f with two maxima, one at each endpoint, and a unique minimum at an interior
point.

g. f with two maxima, one at each endpoint, and two minima occurring at interior
points.

h. f with three maxima, one at each endpoint and another at an interior point, and a
unique minimum at an interior point.

i. f with three zeros, one at each endpoint and another at an interior point, a positive
maximum, and a negative minimum.

j. f with four maxima and a unique minimum, all occurring at interior points.

?10. State whether the given situation is possible or impossible. When applicable, support
your answer with a graph. Consider the interval to be [�a, a], a > 0, for all items and
that c 2 [�a, a]. Suppose also that each function f is continuous over [�a, a].

a. f(�a) < 0, f(a) > 0 and there is a c such that f(c) = 0.

b. f(�a) < 0, f(a) < 0 and there is a c such that f(c) = 0.

c. f(�a) > 0, f(a) > 0 and there is a c such that f(c) = 0.

d. f has exactly three values c such that f(c) = 0.

e. f has exactly three values c such that f(c) = 0, its minimum is negative, its maximum
is positive.

f. f has exactly three values c such that f(c) = 0, its minimum is positive, its maximum
is negative.

g. f has a unique positive maximum, a unique positive minimum, and a unique value c

such that f(c) = 0.

h. f has a unique positive maximum, a unique negative minimum, and a unique value
c such that f(c) = 0.

i. f has a unique positive maximum, a unique negative minimum, and two values c such
that f(c) = 0.

j. f has a unique positive maximum, a unique positive minimum, and five values c such
that f(c) = 0, two of which are c = ±a.

k. f has two positive maxima, two negative minima, and no value c such that f(c) = 0.

l. f has two positive maxima, one negative minimum, and a unique value c such that
f(c) = 0.

m. f has two positive maxima, one negative minimum found between the two maxima,
and a unique value c such that f(c) = 0.

n. f has two maxima, two minima, and no value c such that f(c) = 0.

o. f has two maxima, two minima, and a unique value c such that f(c) = 0.
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?11. Determine whether the given function will have extrema (both a maximum and a mini-
mum) on the interval indicated. If not, provide an explanation.

a. f(x) = sinx, (�⇡/2,⇡/2)

b. f(x) = sinx, [�⇡/2,⇡/2)

c. f(x) =
1

x� 1

, [2, 4]

d. f(x) =
1

x� 1

, [�4, 4]

e. f(x) =

8
<

:
2�

p
�x if x < 0,

2�
p
x if x � 0,

[�3, 3]

f. f(x) =

8
<

:
(x� 2)

2

+ 2 if x < �1,

(x� 2)

2 � 1 if x � �1,
[�3, 3]

g. f(x) = �x4 + 2x2 � 1, [�1, 1]

h. f(x) = �x4 + 2x2 � 1,

✓
�3

2

,
3

2

◆
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TOPIC 4.3: Problems Involving Continuity

This is an OPTIONAL topic. It is intended for the enrichment of the students, to
enhance their understanding of continuity and the properties it makes possible, such
as stated in the Intermediate Value Theorem.

DEVELOPMENT OF THE LESSON

(A) INTRODUCTION

Continuity is a very powerful property for a function to possess. Before we even move
on to its possibilities with respect to differentiation and integration, let us take a look at
some types of problems which may be solved if one has knowledge of the continuity of the
function(s) involved.

(B) LESSON PROPER

For every problem that will be presented, we will provide a solution that makes use of
continuity and takes advantage of its consequences, such as the Intermediate Value Theorem
(IVT).

APPROXIMATING ROOTS (Method of Bisection)

Finding the roots of polynomials is easy if they are special products and thus easy to fac-
tor. Sometimes, with a little added effort, roots can be found through synthetic division.
However, for most polynomials, roots, can at best, just be approximated.

Since polynomials are continuous everywhere, the IVT is applicable and very useful in ap-
proximating roots which are otherwise difficult to find. In what follows, we will always
choose a closed interval [a, b] such that f(a) and f(b) differ in sign, meaning, f(a) > 0 and
f(b) < 0, or f(a) < 0 and f(b) > 0.

In invoking the IVT, we take m = 0. This is clearly an intermediate value of f(a) and f(b)

since f(a) and f(b) differ in sign. The conclusion of the IVT now guarantees the existence
of c 2 [a, b] such that f(c) = 0. This is tantamount to looking for the roots of polynomial
f(x).

EXAMPLE 1: Consider f(x) = x3 � x+ 1. Its roots cannot be found using factoring and
synthetic division. We apply the IVT.
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• Choose any initial pair of numbers, say �3 and 3.

• Evaluate f at these values.

f(�3) = �23 < 0 and f(3) = 25 > 0.

Since f(�3) and f(3) differ in sign, a root must lie between �3 and 3.

• To approach the root, we trim the interval.

– Try [0, 3]. However, f(0) = 1 > 0 like f(3) so no conclusion can be made about
a root existing in [0, 3].

– Try [�3, 0]. In this case, f(0) and f(�3) differ in sign so we improve the search
space for the root from [�3, 3] to [�3, 0].

• We trim further.

– f(�1) = 1 > 0 so the root is in [�3,�1].

– f(�2) = �5 < 0 so the root is in [�2,�1].

– f(�3

2

) = �7

8

< 0 so the root is in [�3

2

,�1].

– f(�5

4

) =

19

64

> 0 so the root is in [�3

2

,�5

4

].

• Further trimming and application of the IVT will yield the approximate root x =

�53

40

= �1.325. This gives f(x) ⇡ �0.0012.

The just-concluded procedure gave one root, a negative one. There are two more possible
real roots.

FINDING INTERVALS FOR ROOTS

When finding an exact root of a polynomial, or even an approximate root, proves too
tedious, some problem-solvers are content with finding a small interval containing that
root

EXAMPLE 2: Consider again f(x) = x3 � x + 1. If we just need an interval of length 1,
we can already stop at [�2,�1]. If we need an interval of length 1/2, we can already stop
at [�3

2

,�1]. If we want an interval of length 1/4, we stop at [�3

2

,�5

4

].

EXAMPLE 3: Consider f(x) = x3 � x2 + 4. Find three distinct intervals of length 1, or
less, containing a root of f(x).

When approximating, we may choose as sharp an estimate as we want. The same goes for
an interval. While some problem-solvers will make do with an interval of length 1, some
may want a finer interval, say, of length 1/4. We should not forget that this type of search
is possible because we are dealing with polynomials, and the continuity of polynomials
everywhere allows us repeated use of the IVT.
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SOME CONSEQUENCES OF THE IVT

Some interesting applications arise out of the logic used in the IVT.

EXAMPLE 4: We already know from our first lessons on polynomials that the degree of a
polynomial is an indicator of the number of roots it has. Furthermore, did you know that
a polynomial of odd degree has at least one real root?

Recall that a polynomial takes the form,

f(x) = a
0

xn + a
1

xn�1

+ ...+ an�1

x+ an

where a
0

, a
1

, ..., an are real numbers and n is an odd integer.

Take for example a
0

= 1. So,

f(x) = xn + a
1

xn�1

+ ...+ an�1

x+ an.

Imagine x taking bigger and bigger values, like ten thousand or a million. For such values,
the first term will far outweigh the total of all the other terms. See, if x is positive, for big n

the value of f(x) will be positive. If x is negative, for big n the value of f(x) will be negative.

We now invoke the IVT. Remember, n is odd.

• Let a be a large-enough negative number. Then, f(a) < 0.

• Let b be a large-enough positive number. Then, f(b) > 0.

By the IVT, there is a number c 2 (a, b) such that f(c) = 0. In other words, f(x) does
have a real root!

Teaching Tip

Ask the class why the claim may not hold for polynomials of even degree.

Answer: It is possible that the graphs of polynomials of even degree only stay
above the x-axis, or only below the x-axis. For example, the graph of f(x) = x2+1

stays only above the x-axis and therefore does not intersect x-axis, that is, f(x)
has no roots.
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CHAPTER 1 EXAM

I. Complete the following tables of values to investigate lim

x!1

(2x+ 1).

x f(x)

0.5

0.7

0.95

0.995

0.9995

x f(x)

1.6

1.35

1.05

1.005

1.0005

II. Using the tables of values above, determine the following:

1. lim

x!1

�
(2x+ 1) 2. lim

x!1

+
(2x+ 1) 3. lim

x!1

(2x+ 1)

III. Evaluate the following using Limit Theorems.

1. lim

x!1

x2 � 4x+ 3

x2 � 1

2. lim

t!0

3t� 2 sin t+ (et � 1)

t

IV. Let f be the function defined below.

f(x) =

8
>>><

>>>:

����
x2 + 3x

x+ 3

���� , if x  0, x 6= �3

x+ 1, if 0 < x < 1

p
x, if x � 1.

Discuss the continuity of f at
x = �3, x = 0 and x = 1. If
discontinuous, give the type
of discontinuity.

V. Consider the graph of y = f(x) below.

x

y

y = f(x)

(�2, 1)

(0, 3)

(3, 0)

(3, 2)

(3, 4)

x = 6

At the following x-
coordinates, write whether
(A) f is continuous, (B) f

has a removable discontinu-
ity, (C) f has an essential
jump discontinuity, or (D)
f has an essential infinite
discontinuity.

1. x = �2

2. x = 0

3. x = 3

4. x = 6

88



Bibliography

[1] H. Anton, I. Bivens, S. Davis, Calculus: Early Transcendentals, John Wiley and
Sons, 7th Edition, 2002.

[2] R. Barnett, M. Ziegler, K. Byleen Calculus for Business, Economics, Life Sciences
and Social Sciences, Pearson Education (Asia) Pre Ltd, 9th Edition, 2003.

[3] L. Leithold, College Algebra and Trigonometry, Addison Wesley Longman Inc.,
1989, reprinted-Pearson Education Asia Pte. Ltd, 2002.

[4] L. Leithold, The Calculus 7, Harpercollins College Div., 7th edition, December
1995.

[5] Math 53 Module Committee, Math 53 Elementary Analysis I Course Module, In-
stitute of Mathematics, UP Diliman, 2012.

[6] J. Stewart, The Calculus: Early Transcendentals, Brooks/Cole, 6th Edition, 2008.

[7] S. Tan, Applied Calculus for the Managerial, Life and Social Sciences, Brooks/Cole,
Cengage Learning, 9th Edition, 2014.

308



Biographical Notes

TEAM LEADER:

JOSE MARIA P. BALMACEDA

Dr. Jose Maria P. Balmaceda is a Professor of the Institute of Mathematics and Dean of the
College of Science, University of the Philippines Diliman. He obtained the Ph.D. Mathematics
degree from the University of Illinois at Urbana-Champaign and master’s and undergraduate
degrees in math from UP Diliman. He is a member of the National Academy of Science and
Technology (NAST Philippines), Chair of the CHED Technical Committee for Mathematics, and
President of the Mathematical Society of the Philippines. He is a recipient of various awards
such as the NAST Outstanding Young Scientist Award, Science Prize (for Mathematics) from
the Third World Academy of Sciences, Achievement Award from the National Research Council
of the Philippines, and UP Diliman’s Gawad Chanselor Awards for Most Outstanding Teacher
and Most Outstanding Researcher.

WRITERS:

RICHARD S. LEMENCE

Dr. Richard S. Lemence is an Associate Professor and Deputy Director for Facilities and Re-
sources, Institute of Mathematics, University of the Philippines Diliman. He obtained the
doctorate degree in mathematics from Niigata University, Japan, specializing in differential ge-
ometry. He was a former faculty member of the Department of Mathematics of the Mindanao
State University-Iligan Institute of Technology, where he also completed his baccalaureate and
master’s degrees in mathematics. Dr. Lemence was awarded by the National Academy of Sci-
ence and Technology as Outstanding Young Scientist and designated by the University of the
Philippines as U.P. Scientist I. He is the current National Director of the Philippine Mathemat-
ical Olympiad.

309



ORESTE M. ORTEGA JR.

Mr. Oreste M. Ortega Jr. is an Assistant Professor in the Mathematics Department of the
Leyte Normal University, Tacloban City. He obtained his BS and MS in Mathematics degrees
from the University of San Carlos in Cebu City. He is currently on dissertation writing for the
Ph.D. Mathematics degree from the Ateneo de Manila University. Mr. Ortega has extensive
experience in teaching calculus and other mathematics subjects, and is an active member of
the Mathematical Society of the Philippines and other professional organizations. His research
interests include graph theory and combinatorics.

CARLENE P. C. PILAR-ARCEO

Dr. Carlene P.C. Pilar-Arceo obtained her doctorate degree in Mathematics from the University
of the Philippines Diliman (UPD), where she also finished her master’s and baccalaureate de-
grees. She is currently a Professor at the Institute of Mathematics, U.P. Diliman and Program
Development Associate of the UPD Office of the Vice Chancellor for Academic Affairs. She was
former UPD College of Science Secretary and served as Assistant Secretary of the University.
A sought-after resource person on the teaching and popularization of mathematics, Dr. Pilar-
Arceo has also published scholarly articles on mathematical analysis and mathematical biology
and two high school mathematics textbooks. She has received U.P. Diliman’s Gawad Chanselor
Award for Most Outstanding Teacher.

LOUIE JOHN D. VALLEJO

Dr. Louie John D. Vallejo is an Assistant Professor at the University of the Philippines Diliman.
He holds a Ph.D. Mathematics degree from U.P. Diliman and master’s and baccalaureate degrees
(summa cum laude) from the same university. His doctoral dissertation research is on approxi-
mation theory and harmonic analysis. He has published his results in international journals and
has presented his work in international and national conferences. Dr. Vallejo is currently the
Deputy Team Leader of the Philippine delegation to the International Mathematical Olympiad
and has been a trainer in the Mathematical Olympiad Selection Camp for several years now.

310



TECHNICAL EDITORS:

MARIAN P. ROQUE

Dr. Marian P. Roque is a Professor and Director of the Institute of Mathematics, University
of the Philippines Diliman, where she also obtained her undergraduate, master’s and doctor-
ate degrees in mathematics. She occupies key positions in professional organizations such as
membership in the Executive Committee of the Centre International de Mathématiques Pures et
Appliquées (CIMPA), based in France, and the National Board of Directors of the Mathematical
Society of the Philippines. She has received the Achievement Award from the National Research
Council of the Philippines and UP Diliman’s Gawad Chanselor sa Natatanging Guro. She holds
a designation as UP Scientist I and is member of the UP Diliman General Education Committee.
Dr. Roque co-authored the graduate textbook Introduction to Classical and Variational Partial
Differential Equations published by the UP Press.

JOSE ERNIE C. LOPE

Dr. Jose Ernie C. Lope is a Professor and former Chair of the then Department of Mathematics,
University of the Philippines Diliman. He obtained master’s and doctorate degrees in mathe-
matics from Sophia University, Japan. A Bachelor of Science Mathematics summa cum laude
graduate of UP Diliman, Dr. Lope has received awards for his research and teaching such as the
UP Scientist I designation, Outstanding Young Scientist Awards from the NAST and the Third
World Academy of Science and the Gawad Chanselor sa Natatanging Guro from UP Diliman.
A former member of the Philippine Team to the International Mathematical Olympiad (IMO),
he later became Team Leader of three Philippine delegations to the IMO that set Philippine
records for medals and citations garnered by the team members.

LANGUAGE AND COPY EDITOR:

ERICK B. LIRIOS

Mr. Erick B. Lirios currently teaches journalism and photojournalism at the Manila Times
College, and works as a columnist for The Manila Bulletin. He edited academic books for
McGraw-Hill Education, the Department of Interior and Local Government and the Ateneo
School of Government. He worked as the Communications Executive for Singapore Telecommu-
nications, as the Corporate Communications Executive for the Spastic Children’s Association of
Singapore, and the Editor-in-Chief of Telecable Magazine. Besides doing proofreading, he also
works as a photographer - the latest being with the World Health Organization.

311


